Контроль роста опухоли это

Естественное развитие большинства злокачественных новообразований проходит через четыре главные фазы: малигнизацию (трансформацию) клеток-мишеней, рост малигнизированных клеток, местную инвазию и развитие дистантных метастазов.

Относительная автономность роста опухолей

Одним из кардинальных свойств опухолей является автономность роста — относительная независимость опухоли от воздействия регуляторных систем организма опухоленосителя и приобретение ею способности к самоуправлению.

При аутокринном механизме клетки опухоли могут одновременно секретировать сигналы для пролиферации и рецепторы для них, что позволяет делящимся клеткам неоплазмы не реагировать на внешние регуляторные влияния организма и быть независимыми от них.

Паракринный механизм связан с секрецией факторов роста опухолевыми клетками и действием их на соседние клетки. Более того, в опухолевых клетках может осуществляться синтез цитокинов и факторов роста и воспринимающих их рецепторов, не характерных для нормальных гистогенетических предшественников.

В то же время автономность роста опухоли относительна. Опухолевые клетки для своей жизнедеятельности должны получать из кровотока питательные вещества и кислород, что делает невозможным их существование вне связи с организмом.

Кроме того, они испытывают постоянное влияние со стороны окружающих нормальных клеток, элементов экстрацеллюлярного матрикса стромы. иммунной, эндокринной и нервной систем. Известно также, что на прогрессирование заболевания влияет пол и возраст больного, У молодых рост и развитие опухопи происходит намного быстрее, чем у пожилых; по частоте заболеваемости рак желудка преобладает у мужчин, а меланома кожи — у женщин и т.д.

Кинетика опухолевых клеток

Скорость роста каждой конкретной опухоли индивидуальна и определяется тремя основными параметрами: продолжительностью клеточного цикла, величиной пролиферативного пула (т.е. числом способных делиться кпеток в опухоли) и уровнем преобладания воспроизведения клеток над их потерей.

Размножение клеток в норме осуществляется путем деления. Время, за которое происходит удвоение клетки и осуществляется полноценная передача генетической информации, называют клеточным циклом (циклом деления), или кинетикой клетки.

Клеточный цикл состоит из двух этапов. Более продолжительный из них — интерфаза. Она занимает до 99% всего времени цикла деления клетки и состоит из трех периодов: G1, G2 и S. Во время интерфазы клетка обладает высокой синтетической активностью и занята воспроизведением своих компонентов.

Затем следует короткий период — митоз (М), во время которого завершается процесс разделения на две дочерние клетки. Клетки, возникающие в результате митотических делений и образующие живой организм, называют соматическими. Основные периоды клеточного цикла показаны на рисунке 6.1.



Рис. 6.1. Схема фаз нормального клеточного цикла [по Вольпе П., 1979 с изменениями].

Первая фаза цикла деления — пресинтетический период или G1-период, наступает поспе митоза и составляет около половины всего жизненного цикла клетки. В этот период происходит интенсивное увеличение цитоплазмы клетки, синтезируются и накапливаются вещества, необходимые для репликации (самовоспроизведения) ДНК. В позднем G1-периоде часть клеток могут выходить из клеточного цикла, дифференцироваться и переходить к выполнению своих функций.

Эти клетки, выполнив свою функцию, в конечном счете погибают. Однако как исключение существуют ткани, в которых специализированные клетки могут возвращаться в клеточный цикл, например клетки печени. Такой клеточный цикл называется продленным.

Опухолевые клетки также способны выходить из клеточного цикла, находиться в фазе покоя и вновь возвращаться в клеточный цикл, сохраняя способность к дальнейшему делению.

Вторая фаза — S-период или синтетический, составляет до 30% продолжительности цикла и характеризуется удвоением числа хромосом, в результате чего плоидность клетки возрастает до четырех. При входе в эту фазу клетка всегда проходит и все последующие стадии цикла деления.

Третья фаза — постсинтетический период или G2-период, когда клетка готовится к митозу. В ней происходит интенсивный синтез цитоплазматических белков и белков, связанных с ДНК. G2-период занимает около 19-20% продолжительности всего цикла.

Митоз, или фаза М, — самый короткий по продолжительности период, занимающий примерно 1% времени всего цикла.

В этой фазе в тетраплоидной клетке (общее число хромосом 4n) каждая хромосома разделяется вдоль по длине, образуя две копии (сестринские хроматиды), ядро раздваивается, а цитоплазма делится пополам, и в результате образуются две дочерние клетки. Каждая дочерняя клетка после митоза содержит по две копии каждой хромосомы. Эти копии называются гомологичными хромосомами.

Общее число хромосом в клетке, известное как диплоидный набор, обозначают 2n. Митотическое деление гарантирует постоянство набора хромосом в соматических клетках. Что касается продолжитепьности клеточного цикла, то в норме она варьирует в разных клетках. По классическим представлениям фазы цикла относительно стабильны по продолжительности (в среднем, G1 — 8 ч; S — 6 ч: G2 — 4 ч; М — до 2 ч), а весь цикл занимает у клеток млекопитающих, в среднем, около 20 ч (рис 6.1).

Следует сказать, что одним из ведущих механизмов действия современных противоопухолевых химиопрепаратов является избирательное воздействие на определенные структуры клетки в разные фазы клеточного цикла. Фазовозависимость цитостатиков обязательно учитывается при проведении химиотерапии.

В опухолевых клетках имеются те же фазы, что и в нормальных. Иногда при злокачественном росте встречается прямое деление — амитоз, когда клетка делится без разрушения ядра и ядрышек.

Кишки большинства опухолей обладают такой же и даже большей продолжительностью клеточного цикла, чем клетки нормальных, быстро обновляющихся тканей. Об этом убедительно говорят авторадиографические исследования. Не существует ни одной опухоли, клетки которой достигали бы скорости размножения нормальных костно-мозговых клеток или клеток покровного эпителия кишечника.

Здесь следует отметить, что, к сожалению, более высокий уровень пролиферации клеток в нормальных тканях, чем в некоторых опухолях, является существенным препятствием для их успешного химиолучевого лечения.

Изучение опухолей показало, что их клональный характер не означает одинаковости всех их клеток, особенно — в отношении клеточного цикла. Клеточный состав опухоли обычно представлен необратимо постмитотическими клетками (составляют от 30 до 70% всех клеток опухоли), т.е. не способными делится, вплоть до момента гибели; покоящимися клетками (законсервированы в фазе G0), способными снова войти в митотический цикл (стволовые опухолевые клетки) и клетками с различной продолжительностью фазы G1, составляющие пролиферирующий пул опухолевых клеток и относящиеся к фракции роста (рис. 6.2).



Рис. 6.2. Клеточный состав типичной опухоли [Cajano А. и соавт., 1972].
I — необратимо посмитотические клетки;
II — покоящиеся клетки (способны снова войти в митотический цикл);
Ill — клетки в митотическом цикле с различной продолжительностью фазы G1

Темп роста новообразования и определяется в основном величиной фракции роста. На ранних, субмикроскопических стадиях опухолевого роста подавляющее большинство злокачественных клеток находится в цикле, составляя пролиферативный пул или фракцию роста.

По мере роста опухоли клетки во все более увеличивающемся количестве покидают этот пул вследствие потерь или возвращения в фазу G0. Поэтому ко времени клинического обнаружения опухоли большинство ее клеток не находится в репликационном пуле.

В тоже время многие опухоли, например рак толстой кишки или молочной железы, имеют небольшие фракции роста. Наилучшим, хоть и грубым морфологическим выражением темпа роста опухоли (пролиферативной активности) является частота митозов или митотический индекс (доля митозов в исследуемой популяции клеток).

Их можно оценить просто по количеству фигур митоза в единице площади гистологического среза опухолевой ткани, с помощью проточной цитометрии или методом авторадиографии с меченым предшественником ДНК — Н-тимидином.

Общеизвестно, что от величины фракции роста опухолевых клеток зависит чувствительность новообразования к химиотерапии. Поскольку большинство цитостатиков действуют на клетки, активно синтезирующие ДНК, нетрудно понять, почему опухоли, содержащие, скажем, 5% своих клеток в репликационном пуле, являются медленно растущими, но относительно устойчивыми к химиотерапии.

И напротив, агрессивные, быстро растущие опухоли (лимфомы и др.), имеющие большой пуп делящихся клеток, подчас буквально тают на глазах под влиянием химиотерапии, и лечение может оказаться эффективным.

Среди опухолевых клеток особого внимания заслуживают сравнительно небольшая часть клеток, которые можно охарактеризовать, как опухолевые стволовые клетки (tumor stem cells). Они способны длительное время существовать в организме вне митотического цикла, в периоде относительного покоя и называются еще покоящиеся (G0), клоногенные клетки.

Однако, под влиянием каких-либо стимулов, эти клетки могут выходить из стагнированного состояния, вступать в клеточный цикл и неограниченно делиться, пополняя пуп пролиферирующих клеток, потомство которых расселяется и колонизирует новые участки тканей.

Уровень воспроизведения опухолевых клеток и клеточные потери. Во взрослом организме количество клеток постоянно, так как количество новообразованных и утратившихся тонко и надежно сбалансировано. При развитии опухолей происходит нарушение этого баланса.

Однако по мере увеличения размеров опухоли темп роста снижается, клеточная пролиферация замедляется, клеточные потери увеличиваются вследствие иммунного воздействия и недостаточного кровоснабжения. При этом доминирующий фактор клеточных потерь — ишемический некроз.

Основными причинами возникновения очагов некроза являются уменьшение по мере роста функционирующей сосудистой сети на единицу объема опухоли и сосудистый стаз. Поэтому доля некротизированных клеток по мере увеличения размеров опухоли всегда увеличивается.

Таким образом, темп роста злокачественных новообразований определяется в основном величиной фракции роста (пулом пропиферирующих клеток) и показателем преобладания воспроизведения клеток над их потерей. В некоторых случаях, особенно с относительно большой фракцией роста, это преобладание велико и приводит к быстрому увеличению массы опухоли, а в других случаях оно весьма незначительно.

Так, в карциномах желудочно-кишечного тракта воспроизведение клеток превышает их потерю примерно лишь на 10% и они имеют тенденцию к гораздо более медленному росту.

Инфильтративный рост опухолей

Инфильтративный (инвазивный) рост (от лат. infiltratio — проникновение) заключается в прямом проникновении (прорастании) опухолевых клеток в окружающие ткани и является одним из основных свойств злокачественности.

В отличие от злокачественных, для доброкачественных опухолей характерен экспансивный рост, т.е. при росте они сдавливают и раздвигают (отодвигают) окружающие нормальные ткани.

При этом сдавленные опухолью элементы окружающей ткани атрофируются, но их количество нарастает и образует вокруг опухоли подобие капсулы (псевдокапсула), В тоже время и некоторые злокачественные опухоли (рак почки, околощитовидной железы, фибросаркома) также растут экспансивно.

Артерии обычно не подвергаются инфильтрирующему росту, так как имеющиеся в их стенке эластин и коллагеновые волокна оказывают значительное сопротивление опухолевым клеткам. Высказывается предположение, что резистентности артерий способствует и высокое внутрисосудистое давление.

Понятно, что вследствие инвазивного роста опухоли прорастают в окружающие анатомические структуры и органы и вызывают нарушения соответствующих функций. Именно эти патогенетические особенности злокачественного роста лежат в основе развития вторичных симптомов и клинических феноменов новообразований.

Кроме того, инвазивный рост является обязательным компонентом метастатического каскада: диссеминации опухолевых клеток по организму предшествует их инвазия из первичного очага в окружающие ткани.

Макроскопические формы рака зависят от того, в каком направлении происходит распространение опухолевой массы: в толщу органа (эндофитная) или за его пределы в виде выбухающего узла (экзофитная) (рис. 6.3).



Рис. 6.3. Основные клинико-морфологические формы роста опухолей.

Экзофитная форма — новообразование имеет вид узла, который выступает в просвет полого органа, или распространяется в толще паренхиматозного, или выступает над поверхностью тела и довольно четко отграничен от здоровых тканей. При этом граница опухоли от видимого ее края составляет около 1 см. Независимо от формы роста раковая опухоль характеризуется склонностью к распаду и изъязвлению, что объясняется особенностями ее кровоснабжения.

Экзофитные опухопи при распаде приобретают вид блюдца — язвы с выступающими, подрытыми в виде валика краями. Такие опухоли называют блюдцеобразными. Экзофитные опухоли в паренхиматозных органах представляют собой округлые узлы, при наружном осмотре они обычно не видны.

При длительном росте из-за особенностей кровоснабжения в центре опухолей происходит распад. Такие формы экзофитных опухолей паренхиматозных органов получили название полостных. По характеру происходящих процессов они аналогичны блюдцеобразным ракам полых органов, но по внешнему виду довольно далеки от них.

Эндофитная форма — раковые клетки распространяются преимущественно в пределах стенки органа. В этих случаях стенка или сам орган становятся толще и плотнее, границы опухоли четко не определяются, а микроскопически от видимого края опухоли распространяется приблизительно на 6 см.

Такой характер роста называют инфильтративным, а опухоль — эндофитным, или инфильтративным раком. Инфильтративный рост новообразования в паренхиматозных органах встречается редко и такая форма опухоли называется диффузной.

Обычно такие опухоли выделяют в качестве особых разновидностей, например в легком — перибронхиальная разветвленная и пневмониелодобная формы, в молочной железе — инфильтративно-отечная, маститоподобная и рожистоподобная формы, в печени — инфильтративная, рак-цирроз и т.д.

Инфильтративно рак протекает более злокачественно, отличается быстрым течением, ранним и бурным метастазированием и плохим прогнозом. При распаде эндофитного рака валикообразные края вокруг изъязвления не образуются, а такие опухоли называются язвенно-инфильтративными. Когда наблюдается сочетание экзо- и эндофитного компонентов опухоли, говорят смешанной форме опухолевого роста.

Делению на основные четыре формы рака (экзофитная, блюдцеобразная, инфильтративная и язвенно-инфильтративная) в наибольшей степени соответствуют новообразования желудочно-кишечного тракта. Рак наружных локализаций обычно имеет вид экзофитной или изъязвленной (соответствует блюдцеобразной) опухоли.

Кроме того, вышеназванным формам роста опухолей часто сопутствует так называемый оппозиционный или вовлекающий рост. Он характерен для воспаления, которое часто сопутствует опухолевому процессу, увеличивая объем и размеры опухоли.

Возможность наличия оппозиционного роста необходимо учитывать при планировании специального лечения, а подготовка к операции или лучевой терапии должна включать противовоспалительную и антибактериальную составляющую.

Формирование опухолевого узла из клональных потомков трансформированной клетки — это сложный процесс роста новообразования, на который влияет множество факторов. Среди них ведущими являются: кинетика (динамика) роста опухолевых клеток, опухолевая прогрессия и гетерогенность, а также ангиогенез в опухоли.

Угляница К.Н., Луд Н.Г., Угляница Н.К.

16 октября 2015

  • 3940
  • 3,2
  • 2
  • 4

  • Анна Петренко
    • Биотехнологии
    • Онкология
    • Стволовые клетки

    Клетки многоклеточного организма существуют не сами по себе, а в создаваемом ими самими тканевом окружении, подобно людям, являющимся элементами общества. Клеточная микросреда не только играет важнейшую роль в поддержании функционирования клетки, но и сама активно на него влияет. Реципрокные динамические взаимодействия между клеткой и ее окружением играют решающую роль в развитии онкологических заболеваний, ставших бичом нашего времени. Развитие современных технологий лабораторного изучения клеток и их микроокружения позволяет отследить эти процессы в беспрецедентных деталях и даже смоделировать в лаборатории микросреду по своему желанию.

    Жизнь на Земле начиналась с простейших организмов, состоящих из одной клетки, которой приходилось быть самостоятельной и самодостаточной. Однако со временем начали появляться и более сложные существа. Клетки в них уже различались внешне и отвечали за разные функции организма, хотя всё еще могли быть не разнесены в пространстве. Что же касается современных многоклеточных организмов — тут уже не скроешь высокую сложность их устройства и сотни типов клеток, образующих ткани, складывающие всё тело: от носа до кончика хвоста. И здесь клетки должны работать особенно слаженно.


    Специализированную физиологическую микросреду, в которой находится СК, называют тканевой нишей. Она поддерживает основные характеристики, отличающие стволовую клетку от всех остальных: плюрипотентность и способность самообновляться [1]. Начнет ли клетка делиться либо останется в покоящемся состоянии, тоже во многом зависит от среды вокруг нее [2, 3].


    Более того, раковые клетки (РК), выделяя сигнальные молекулы, подготавливают специальные ниши для будущих метастазов. В этой связи крайне перспективной становится возможность манипулировать раковыми стволовыми клетками, влияя не на них самих, а на их микросреду или на окружение метастазов. Некоторые исследователи утверждают, что будущее противоопухолевой терапии — это разработка препаратов, направленных на РСК и метастатические ниши.

    Структура микроокружения


    Рисунок 3. Регуляция ниши стволовых клеток нормального кишечного эпителия и колоректального рака. Слева — Сигнальные молекулы, секретируемые кишечными субэпителиальными миофибробластами (ISEMFs) и клетками Панета (Paneth), способствуют обновлению пула СК и нормальной кишечной пролиферации. Справа — Состав микроокружения способствует размножению клеток колоректального рака (КРР) либо их переходу в состояние покоя, из которого они — под влиянием того же микроокружения — могут выйти и восстановить свой онкогенный потенциал. Рисунок из [17], адаптирован.

    Роль воспалительных реакций

    Микроокружение опухоли характеризуется постоянным воспалением. М2-макрофаги, нейтрофилы, тучные клетки, повышенная концентрация медиатора воспаления оксида азота (NO), многие провоспалительные цитокины — всё это способствует процветанию РК и увеличению агрессивности рака [19]. Поддерживают развитие опухоли также регуляторные Т-клетки и Т-хелперы 2 типа.

    Среди сложнейшей сети сигнальных путей особое место по отношению к раку отводится двум системам, приводящим к активации генов, — NF?B и STAT3. Эти факторы транскрипции могут начать работу в ответ на многое: воспаление, бактериальные или вирусные антигены, стресс, свободные радикалы. Используя эти пути, опухоль образуется, пролиферирует, активирует процессы ангиогенеза и инвазии, метастазирует — в общем, делает практически всё для собственного развития. Как оказалось, активация NF?B задействована даже в формировании резистентности рака к химиотерапии и облучению. Эти виды лечения эффективно убивают дочерние раковые клетки, но редко уничтожают сами РСК [19], что обычно имеет печальные последствия в форме обострения болезни спустя какое-то время.

    Однако иммунное микроокружение опухоли может оказывать и обратное влияние. Тогда в него включены другие клетки: M1-макрофаги, Т-хелперы 1 типа, цитотоксические Т-клетки, АПК и естественные киллеры [20]. Переключение с антиопухолевого режима на проопухолевый сейчас активно изучается. К примеру, недавно показано, как рак подавляет нормальные функции эффекторных Т-клеток [21].

    Внеклеточный матрикс

    Внеклеточный матрикс — это каркас микроокружения, формирующий его механическую структуру*. Его создают мезенхимальные клетки: фибробласты, хондроциты, остеобласты. Состав внеклеточного матрикса очень сложен и многообразен: в него входят коллагены — основные белки соединительной ткани (например, коллаген типа IV), протеогликаны, гликопротеины (фибронектин и ламинин-1) и другие компоненты. Ключевые ферменты матрикса — матриксные металлопротеиназы (ММП), разрушающие практически любой белок внеклеточного пространства и тем самым преобразующие его структуру. Двунаправленное влияние ВКМ и РК при некоторых условиях может способствовать прогрессированию опухоли, влиять на ее агрессивность и способность расселяться по всему организму [20]. Например, не только опухолевая клетка для своего роста ремоделирует матрикс, выделяя ММП, но их могут выделять и стромальные клетки микроокружения, облегчая инвазию РК.

    Метастазирование и метастатические ниши


    Модели изучения микроокружения

    Сегодня существует множество моделей изучения того, как микросреда изменяет отдельные клетки и их ДНК, и сопутствующее оборудование становится всё более компактным, автоматизированным и многофункциональным.

    Раньше для выращивания клеток в культуре преимущественно использовались двухмерные (плоские) матрицы. На них было показано, что ограничением формы или подвижности клетки можно спровоцировать деление, апоптоз или даже дифференцировку мезенхимальных СК человека. Сейчас к этим моделям добавились и трехмерные модели из синтетических гидрогелей и матриц, основанных на коллагеновых волокнах. С их помощью удалось обнаружить, что у клеток, культивируемых в 2D- или 3D-окружении, различаются* фенотип, клеточно-матриксная адгезия и даже экспрессия генов.

    * — О том, как чипы различных размеров и разной архитектурной сложности направляют дифференцировку мышиных нейрональных клеток-предшественниц в нейроны либо глию, можно прочитать в статье [24].

    Для более корректного сравнения клеток, выращенных в двух- и трехмерной среде, разработаны специальные микролунки: одиночная клетка контактирует с плоской поверхностью, на которую нанесены адгезивные лиганды. Так, изменяя упругость подложки, можно манипулировать формой клетки в пространстве [25].

    На похожей модели другая группа исследователей показала, что фармакологическое ингибирование сигналинга киназ определенного семейства не дает спящим клеткам рака груди вновь начать делиться. Поскольку для пролиферации нужна также активация другого гена, то параллельная терапия двумя ингибиторами вызывает апоптоз и задерживает рост метастазов. Авторы указывают, что такое комбинированное лечение может предотвратить повторное развитие рака молочной железы [27].


    Комбинированная система Polaris от Fluidigm Corp.

    Микрофлюидика на службе исследователей клеточных ниш

    Изучение единичных клеток с помощью биочипов на основе технологий микрофлюидики впервые было предложено в 2013 году, когда компания Fluidigm Corp. (США) анонсировала первый чип для профилирования гетерогенных популяций клеток [29]. Чип С1 TM позволил исследователю объединить захват отдельных клеток, лизис, обратную транскрипцию и амплификацию в единый автоматический протокол, тем самым решая большинство существующих проблем со скоростью эксперимента и надежностью и воспроизводимостью получаемых данных.

    Довольно быстро биочипы заняли свою нишу во многих областях науки и медицины: изучении стволовых клеток, иммунологии, эпигенетике и, конечно, в онкологии. Так, с помощью биочипов была проведена одна из самых масштабных работ по определению клональности мутаций у пациентов с острым лимфобластным лейкозом. Результаты дали основания полагать, как именно происходило развитие заболевания в каждом конкретном случае [30].

    В 2015 году Fluidigm Corp. анонсировала новую комбинированную систему Polaris TM , которая позволяла не только профилировать популяцию в целом, но и изучать влияние микроокружения на конкретные единичные клетки. На одном чипе теперь можно было выбрать клетки с интересующим иммунофенотипом, изолировать их в индивидуальных камерах и задать определенные параметры клеточной ниши.

    Помимо манипуляций с потоками среды и газа, температурой и влажностью, в камеры клеток можно вводить дополнительные факторы, в том числе сигнальные молекулы, РНК, вирусы и бактерии. Такая свобода действий позволяет, во-первых, смоделировать практически любое клеточное состояние — апоптоз ли, пролиферацию, воспаление, гипоксию, дифференцировку или синтез специфических белков, а во-вторых, получать воспроизводимые и надежные результаты, гарантировать которые могут только приборы с высоким уровнем автоматизации. Более того, с того момента, как клетка попадает на чип, за каждым мгновением ее жизни ведется наблюдение, что позволяет напрямую соотносить изменения в микроокружении с фенотипом и экспрессией генов конкретной клетки.

    Приборы типа Polaris TM открывают огромные перспективы в области изучения клеточного микроокружения, какую бы конечную цель не ставил перед собой исследователь — проверить эффективность нового лекарства, изучить новый сигнальный каскад или посмотреть, как меняется фенотип клетки в тех или иных условиях [31, 32].


    Результаты лабораторных исследований, кроме подтверждения злокачественного процесса, должны свидетельствовать о типе опухоли, степени распространения опухолевого процесса. Диагностика злокачественных опухолей отличается от процесса распознавания доброкачественных участков.

    Развитие опухоли начинается с того, что группа клеток под влиянием неблагоприятных факторов выходит из-под контроля и начинает самостоятельную деятельность – безудержное размножение. Данные клетки составляют первичный участок опухоли.

    Отличие злокачественного процесса от доброкачественной опухоли

    Опухоли могут быть схожи. Одновременно с этим они разнообразны, что затрудняет их классификацию. Индивидуальность каждого опухолевого образования зависит от факторов возникновения, механизма роста, расположения опухоли и степени проникновения в окружающие анатомические структуры.

    Опухоли разделяют на доброкачественные и злокачественные образования.

    К доброкачественным опухолям относятся образования, которые не опасны для жизни. Доброкачественные опухоли растут медленно. Для них не характерно рецидивирование и рост в окружающие органы. Доброкачественные опухоли не метастазируют.

    Однако опухоль доброкачественной природы может значительно ухудшить качество жизни. Если опухоль локализуется в железах внутренней секреции, происходит нарушение гормональной регуляции. Доброкачественное образование больших размеров в кишечнике сдавливает петли кишечника. Как следствие - кишечная непроходимость. Доброкачественные опухоли могут перерождаться в злокачественные опухолевые образования.

    Злокачественные новообразования – опухоли, отличием которых является бесконтрольное размножение клеток с проникновением в соседние ткани. Опухолевые клетки переносятся кровью в другие органы, образуя метастазы. Метастазы способны формироваться в костях, печени, головном мозге. Злокачественные опухоли нуждаются в обязательном лечении. Без терапевтических мероприятий раковые опухоли прогрессируют, вплоть до летального исхода.

    Особенности диагностики

    Диагностика доброкачественных новообразований основана на признаках наличия опухоли. Зачастую пациенты самостоятельно обнаруживают опухоль. Внешне доброкачественная опухоль выглядит как округлое, четко ограниченное новообразование с гладкой поверхностью. Беспокойство вызывает существование опухоли.

    Диагностика доброкачественных процессов не вызывает трудностей. Опухоль сама не несет опасности жизни больного. Угроза кроется в нарушенной функции органа, где локализовалось опухолевое образование. Диагностика доброкачественных и злокачественных образований различна.

    Клинические проявления злокачественного процесса довольно разнообразны. Поэтому диагностика злокачественных опухолей часто затруднена. В комплексе симптомов злокачественных опухолей выделяют четыре главных:

    Синдром патологических выделений. Патологические кровянистые или гнойные выделения свидетельствуют о развитии онкологического процесса. Если раковая опухоль локализуется в желудке, то ее симптом - желудочное кровотечение. Злокачественная опухоль матки дает о себе знать обильными кровянистыми выделениями, а рак молочной железы – серозно-геморрагическим отделяемым из соска.

    Нарушение функции органа. Прижившись в органе, раковая опухоль активно увеличивается в размерах, выделяет токсические вещества. При этом изменяется функционирование органа или ткани. Например, рак кишечника симптоматически проявляется кишечной непроходимостью. Основным признаком злокачественного образования в гортани является снижение или потеря голоса, кашель, трудности при проглатывании пищи.

    Определение клинических признаков опухолевого процесса и применение индивидуальных методов диагностики важно для определения диагноза и выбора оптимального лечения. Диагностировать злокачественную опухоль необходимо как можно быстрее, так как рак на ранней стадии полностью поддается лечению. Своевременно поставленный диагноз – выявление злокачественного образования во второй или третьей стадии. Поздняя диагностика – запущенный процесс онкологии четвертой степени. Вероятность побороть болезнь низкая.

    Методы диагностики злокачественных опухолей

    Рентгенологические методы

    Рентгенографическое обследование – основной метод диагностики опухолей желудка, легких, кишечника. Новейшим методом исследования в современной рентгенологии является томография – послойное исследование с контрастированием органа. Широко применяется ангиография, бронхография. Флюорография играет большую роль при профилактических осмотрах.

    Маммография – методика обследования женской груди с использованием малой дозы рентгеновских лучей. С помощью маммографии обнаруживают опухоли, которые невозможно обнаружить при пальпации. Обследование груди при помощи маммографии врачи рекомендуют всем женщинам, особенно пациенткам, достигшим сорокапятилетнего возраста.

    Компьютерная томография – метод диагностики, основанный на использовании рентгеновского излучения. Главным преимуществом КТ является возможность получить за минимальный промежуток времени большое количество поперечных проекций, что немаловажно для планирования хирургической операции и последующего радиолечения.

    Ультразвуковая томография – информативный метод исследования, помогающий обнаружить опухоль печени, желчного пузыря, головки поджелудочной железы, почек, мочевого пузыря, внутренних половых органов. Популярно УЗИ - исследование совместно с доплерографией. Это позволяет наблюдать направление кровотока в сосудах органа, где локализовалась опухоль.

    Эндоскопия

    Метод эндоскопического исследования, благодаря новейшим достижениям оптики, приобрел решающее значение в диагностике начальных стадий онкологического процесса. Применение эндоскопической аппаратуры дает возможность внимательно осмотреть слизистые покровы внутренних органов, выполнить цитологическое исследование. При подозрении на онкологию – произвести забор кусочка ткани для гистологического анализа.

    Лабораторные исследования

    Клинические анализы крови, мочи, желудочного сока необходимы. Следы крови в моче или каловых массах являются показателями развивающегося патологического процесса онкологического характера. Снижение гемоглобина указывает на анемию. В диагностике рака большое значение имеют биохимические методы исследования. Биохимические тесты обнаруживают эндокринную природу опухоли. Влияние генетических нарушений, лежащих в основе опухоли, позволяет выявить специфические молекулярные маркеры. На основе маркеров создаются тесты для диагностики раковых заболеваний в стадии зарождения.

    Онкомаркеры

    Онкомаркеры – специфические вещества-индикаторы, которые образуются в результате жизнедеятельности раковых клеток. Высокие показатели онкомаркеров говорят о прогрессирующей онкологии.

    Цитологический метод. Гистология

    Цитология - доступный метод исследования, который дает возможность выявить атипичные клетки и диагностировать онкопатологию на ранних стадиях. Цитологический метод применяется для диагностики ракового процесса в шейке матки. Образцы мокроты рассматривают при подозрении на злокачественную опухоль легких. Атипичные клетки, обнаруженные при исследовании пунктата из опухоли, подтверждают рак.

    Гистология. В современной медицине недопустимо химиотерапевтическое лечение или хирургические операции без предварительного гистологического анализа тканей. Для получения наиболее достоверных результатов гистологического исследования важно строго соблюдать пункты забора биологического материала. Гистологическое исследование бывает срочным и плановым. При срочном анализе биологические образцы замораживают, затем выполняют срезы. Далее врач оценивает состояние тканей под микроскопическим увеличением. Процедура занимает сорок минут времени. Плановое гистологическое исследование заключается в помещении биологических тканей в специальный раствор, заливают парафин, и только после этого делают срез и прокрашивают. Результаты оценивают через десять дней.

    После диагностирования рака необходимо выбрать метод лечения. Хирургическая операция - самый конструктивный метод борьбы с раковой опухолью. Химиотерапия – метод лечения онкологических болезней с использованием медикаментозных средств, действие которых направлено на угнетение процесса деления онкоклеток. Иммунотерапия назначается для поддержания защитных сил организма в борьбе с онкологией.

  • Читайте также: