При взаимодействии меди с хлором образуется хлорид меди 2


Хлорид меди (II) (медь хлорная) — бинарное неорганическое вещество, соединение меди с хлором, относящееся к классу галогенидов и солей (может рассматриваться как соль соляной кислоты и меди). Образует кристаллогидраты вида CuCl2·nH2O.

Содержание

  • 1 Описание
  • 2 Получение
  • 3 Химические свойства
  • 4 Применение

Описание

Хлорид меди (II) при стандартных условиях представляет собой жёлто-бурые (по некоторым данным — тёмно-коричневые) кристаллы моноклинной сингонии, пространственная группа I 2/m, параметры ячейки a = 0,670 нм , b = 0,330 нм , c = 0,667 нм , β = 118,38° , Z = 2 .

При кристаллизации из водных растворов образует кристаллогидраты, состав которых зависит от температуры кристаллизации. При температуре ниже 117 °C образуется CuCl2·H2O, при Т a = 0,738 нм , b = 0,804 нм , c = 0,372 нм , Z = 2 .

Хорошо растворим в воде (77 г/100 мл), этаноле (53 г/100 мл), метаноле (68 г/100 мл), ацетоне. Легко восстанавливается до Cu 1+ и Сu 0 . Токсичен.

Получение

В природе дигидрат хлорида меди (II) CuCl2·2H2O встречается в виде редкого минерала эрнохальцита (кристаллы синего цвета).

В промышленности дихлорид меди получают:

  • Хлорированием сульфида меди:
CuS + Cl2 → 300−400oC CuCl2 + S
  • или используют хлорирующий обжиг:
CuS + 2NaCl + 2O2 → 350−360oC CuCl2 + Na2SO4

В лабораторной практике используют следующие методы:

  • Взаимодействие металлической меди с хлором:
Cu + Cl2 ⟶ CuCl2
  • Взаимодействие оксида меди (II) с соляной кислотой:
CuO + 2HCl ⟶ CuCl2 + H2O
  • Взаимодействие гидроксида меди (II) с соляной кислотой (реакция нейтрализации):
Cu(OH)2 + 2HCl ⟶ CuCl2 + 2H2O
  • Взаимодействие карбоната меди с соляной кислотой:
CuCO3 + 2HCl ⟶ CuCl2 + CO2↑ + H2O
  • Растворение меди в царской водке:
3Cu + 2HNO3 + 6HCl → 30−50oC 3 CuCl2 + 2NO↑ + 4H2O

Химические свойства

  • Взаимодействие с щелочами с образованием нерастворимого основания и растворимой соли:
CuCl2 + 2NaOH ⟶ Cu(OH)2↓ + 2NaCl
  • Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений металлов левее меди, например с цинком:
CuCl2 + Zn ⟶ ZnCl2 + Cu
  • Реакции ионного обмена с другими солями (если образуется нерастворимое вещество или газ):
CuCl2 + 2AgNO3 ⟶ Cu(NO3)2 + 2AgCl↓

Применение

Применяют для омеднения металлов, как катализатор крекинга, декарбоксилирования, протраву при крашении тканей.

Хлорид меди (II), характеристика, свойства и получение, химические реакции.











Хлорид меди (II) – неорганическое вещество, имеет химическую формулу CuCl2.

Краткая характеристика хлорида меди (II):

Хлорид меди (II) – неорганическое вещество жёлто-бурого (по некоторым данным – тёмно-коричневого) цвета.

Химическая формула хлорида меди (II) CuCl2.

Хлорид меди (II) – неорганическое химическое соединение, соль соляной кислоты и меди.

Хорошо растворяется в воде, метаноле, этаноле, пропаноле, изопропаноле, ацетоне, бензиловом спирте, изоамиловом спирте. Плохо растворим в диэтиловом эфире.

Растворяясь в воде, образует растворы различного цвета:

– темно-коричневого цвета (концентрированный раствор CuCl2),
– зеленого цвета (разбавленный раствор CuCl2),
– голубого цвета (сильно разбавленный раствор CuCl2).

С водой хлорид меди (II) образует кристаллогидраты с общей формулой CuCl2·nH2O, где n может быть 1, 2, 3 или 4: гидрат хлорида меди (II) CuCl2·H2O, дигидрат хлорида меди (II) CuCl2·2H2O, тригидрат хлорида меди (II) CuCl2·3H2O и тетрагидрат хлорида меди (II) CuCl2·4H2O.

Образование кристаллогидратов зависит от температуры кристаллизации. При температуре ниже 117 °C образуется CuCl2·H2O, при ниже 42 °С – CuCl2·2H2O, при ниже 26 °С – CuCl2·3H2O, при ниже 15 °С – CuCl2·4H2O.

Хлорид меди (II) является парамагнитным веществом.

Хлорид меди (II) токсичен.

В природе хлорид меди (II) встречается в виде минералов толбачита (CuCl2) и эрнохальцита (CuCl2·2H2O).

При работе с медью двухлористой 2-водной (CuCl2·2H2O) следует применять индивидуальные средства защиты (респиратор, защитные очки, резиновые перчатки), а также соблюдать меры личной гигиены. Не допускать попадания препарата внутрь организма. Помещения, в которых производятся работы с медью двухлористой 2-водной, должны быть оборудованы эффективной приточно-вытяжной вентиляцией. Испытания препарата в лаборатории проводят в вытяжном шкафу (см. ГОСТ 4167-74 Реактивы. Медь двухлористая 2-водная. Технические условия).

Медь двухлористая 2-водная ядовита, при попадании внутрь организма вызывает отравления, на кожу и слизистые оболочки – профессиональные заболевания кожи (см. ГОСТ 4167-74 Реактивы. Медь двухлористая 2-водная. Технические условия).

--> -->Форма входа -->

--> -->Категории раздела -->

-->
Логика в химии [438]
Киберхимия [56]
Бинарные химические соединения [841]
-->

--> -->Поиск -->

--> -->Мини-чат -->

--> -->Друзья сайта -->

--> -->Статистика -->

Медь активно реагирует с галогенами. Она соединяется с хлором, бромом и йодом уже при обычной температуре. Известны галиды Cu Г2 (кроме CuI 2, который не получен). Взаимодействие элементов погруппы меди с галоидами сильно ускоряется в присутствии влаги, при нагревании и под действием света.

Монохлорид меди CuCl - бесцветные кристаллы, т. пл. 430 0 С, ∆Нобр 0 = - 137,26 кДж/моль. Устойчив в сухом воздухе, но окисляется и гидролизуется во влажном воздухе с образованием основных хлоридов двухвалентной меди.

Получают CuCl восстановлением солянокислого раствора CuCl 2 избытком металлической меди в качестве восстановителя, могут быть использованы также гидразин, глицерин, SO 2, Zn , Al .

Монохлорид-промежуточный продукт в производстве меди, поглотитель газов при очистке ацетилена, а также окиси углерода в газовом анализе, катализатор в органическом синтезе, антиоксидант для растворов целлюлозы и т.д.

Дихлорид меди CuCl 2 – темно-коричневые кристаллы, т. пл. 596 0 С, ∆Нобр 0 = - 215 кДж/моль. При 993 0 С разлагается до CuCl и хлора.

CuCl 2 + Cu = 2 CuCl

CuCl2 + H2S = CuS + 2HCl

Получают CuCl 2 взаимодействием CuO или CuCO 3 с HCl , реакцией CuSO 4 с BaCl 2.

Применяют CuCl 2 для омеднения металлов, как катализатор крекинга, декарбоксилирования, окислительно-восстановительных органических реакций, протраву для крашения тканей, для получения основного хлорида меди.

Хлори́д ме́ди(II) (медь хлорная) — бинарное неорганическое вещество, соединение меди схлором, относящееся к классу галогенидов и солей (может рассматриваться как соль соляной кислоты и меди). Образует кристаллогидраты вида CuCl 2·nH 2O.

Хлорид меди(II) при стандартных условиях представляет собой жёлто-бурые (по некоторым данным — тёмно-коричневые) кристаллы с моноклинной решеткой, пространственная группа I 2/m,a = 0,670 нм, b = 0,330 нм, c = 0,667 нм, β = 118°23’, Z = 2 [2] .

Получение В природе дигидрат хлорида меди(II) CuCl 2·2H 2O встречается в виде редкого минерала эрнохальцита (кристаллы синего цвета). В промышленности дихлорид меди получают:

  • Хлорированием сульфида меди:

  • или используют хлорирующий обжиг:

В лабораторной практике используют следующие методы:

  • Взаимодействие металлической меди с хлором:

  • Взаимодействие оксида меди(II) с соляной кислотой:

  • Взаимодействие гидроксида меди(II) с соляной кислотой(реакция нейтрализации):

  • Взаимодействие карбоната меди с соляной кислотой:

  • Растворение меди в царской водке:

Химические свойства

  • Взаимодействие с щелочами с образованием нерастворимогооснования и растворимойсоли:

  • Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений металлов левее меди:

  • Реакции ионного обмена с другими солями (если образуется нерастворимое вещество или газ):

Применение

Применяют для омеднения металлов, как катализатор крекинга, декарбоксилирования, протраву при крашении тканей.

Представляет собой белый или зеленоватый порошок, практически нерастворимый в воде (0,0062 г/100 мл при 20 °C). Зеленоватую окраску придают примеси хлорида меди(II).

Впервые хлорид меди(I) был получен Робертом Бойлем в 1666 году, из хлорида ртути(II) и металлической меди:


В 1799 году, Джозеф Луи Пруст успешно отделил дихлорид меди от монохлорида и описал эти соединения. Это было достигнуто путем нагревания CuCl 2 в бескислородной среде, в результате чего хлорид меди(II) потерял половину связанного хлора. После этого он удалил остатки дихлорида меди от хлорида меди(I) и промыл водой.


Физические свойства

Монохлорид меди образует кристаллы белого цвета, кубической сингонии, пространственная группа F 4 3m, a = 0,5418 нм, Z = 4, структура типа ZnS. При нагревании кристаллы синеют. При температуре 408 °C CuCl переходит в гексагональную модификацию, пространственная группа P 6 3mc, a = 0,391 нм, c = 0,642 нм, Z = 4.

Монохлорид меди плавится и кипит без разложения. В пара́х молекулы полностью ассоциированы (димеры с незначительной примесью тримеров), поэтому формулу вещества иногда записывают как Cu 2Cl 2.

Плохо растворим в воде (0,062% при 20 °C), но хорошо в растворах хлоридов щелочных металлов и соляной кислоте. Так в насыщенном растворе NaCl растворимость CuCl составляет 8% при 40 °C и 15% при 90 °C. Водный раствор аммиака растворяет CuCl с образованием бесцветного комплексного соединения [Cu(NH 3) 2]Cl.

Получение

В природе монохлорид меди встречается в виде редкого минерала нантокит (по названию села Нантоко, Чили), который благодаря подмеси атакамита часто окрашен в зелёный цвет.

В промышленности монохлорид меди получают несколькими способами:

  • Хлорирование избытка меди, взвешенной в расплавленном CuCl:

  • Восстановление CuCl 2 медью в подкисленном растворе:

В лабораторной практике последний метод также широко распространён.

  • Очень чистый препарат получается при взаимодействии меди с газообразным хлористым водородом:

  • Похожая реакция идёт в растворе в присутствии окислителей (O 2, HNO 3, KClO 3):

  • Удобен способ восстановления меди(II) двуокисью серы:

  • Восстановление сульфитом при избытке хлоридов:

  • Возможна реакция обратного диспропорционирования:

  • Возможно получение монохлорида меди термическим разложением дихлорида:

Химические свойства

  • При кипячении суспензии монохлорида меди происходит реакция диспропорционирования:

  • Монохлорид меди обратимо растворяется в соляной кислоте с образованием комплексного соединения:

  • Монохлорид меди устойчив в сухом воздухе, но во влажном начинает окисляться до основного хлорида (который и придаёт кристаллам зелёный цвет):

  • В кислой среде окисление приводит к образованию нормальных солей:

  • Окисление можно проводить и горячей концентрированной азотной кислотой:

  • Аммиачные растворы монохлорида меди поглощают ацетилен с образованием красного осадка:

  • Кислые растворы монохлорида меди обратимо поглощают окись углерода:

Применение

  • Монохлорид меди — промежуточный продукт при производстве меди.
  • Поглотитель газов при очистке ацетилена, а также CO в газовом анализе.
  • Катализатор в органическом синтезе, например при окислительном хлорировании метана или этилена, в производстве акрилонитрила.
  • Антиоксидант для растворов целлюлозы.

Ag 2 SO 4 + CuCl 2 = 2AgCl + CuSO 4

1. Соли образуются при взаимодействии металлов с неметаллами.

Например, при взаимодействии железа с хлором образуется хлорид железа(\(III\)):
2 Fe + 3 Cl 2 ⟶ t ° 2 Fe Cl 3 .

Нитрат магния образуется при взаимодействии магния с нитратом серебра:
Mg + 2 Ag NO 3 → M g NO 3 2 + 2 Ag ↓ .

4. Соли образуются при взаимодействии основных, кислотных или амфотерных оксидов с оксидами, принадлежащими к другой группе оксидов.

Например, при взаимодействии основного оксида кальция с кислотным оксидом углерода(\(IV\)) образуется карбонат кальция:
CaO + CO 2 → Ca CO 3 .

При нагревании смеси основного оксида магния с амфотерным оксидом алюминия образуется алюминат магния:
MgO + Al 2 O 3 ⟶ t ° Mg AlO 2 2 .

5. Соли образуются при взаимодействии основных и амфотерных оксидов с кислотами.

Например, сульфат меди(\(II\)) можно получить, используя оксид меди(\(II\)) и серную кислоту:
CuO + H 2 SO 4 → Cu SO 4 + H 2 O .

Хлорид цинка можно получить, используя оксид цинка и соляную кислоту:
ZnO + 2 HCl → Zn Cl 2 + H 2 O .

6. Соли образуются при взаимодействии кислотных и амфотерных оксидов с основаниями.

Например, при пропускании углекислого газа через известковую воду (водный раствор гидроксида кальция) выпадает осадок карбоната кальция:
Ca OH 2 + CO 2 → Ca CO 3 ↓ + H 2 O .

При взаимодействии оксида серы(\(IV\)) с гидроксидом натрия образуется сульфит натрия:
2 NaOH + SO 2 → Na 2 SO 3 + H 2 O .

7. Соли образуются при взаимодействии кислот с основаниями или с амфотерными гидроксидами.

Например, сульфат меди(\(II\)) можно получить, используя гидроксид меди(\(II\)) и серную кислоту:
Cu OH 2 + H 2 SO 4 → Cu SO 4 + 2 H 2 O .

Нитрат алюминия образуется в результате взаимодействия гидроксида алюминия с азотной кислотой:
Al OH 3 + 3 H NO 3 → Al NO 3 3 + 3 H 2 O .

8. Соли можно получить, используя химическую реакцию обмена, протекающую между кислотой и другой солью.

Например, при взаимодействии сульфида железа(\(II\)) с серной кислотой образуется сульфат железа(\(II\)):
FeS + H 2 SO 4 → Fe SO 4 + H 2 S ↑ .

Хлорид кальция образуется при взаимодействии соляной кислоты (водного раствора хлороводорода) с карбонатом кальция:
CaCO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 ↑ .

9. Соли образуются при взаимодействии щелочей с растворимыми в воде солями.

Например, нитрат натрия образуется в результате химической реакции, протекающей между гидроксидом натрия и нитратом меди(\(II\)):
2 NaOH + Cu NO 3 2 → 2 Na NO 3 + Cu OH 2 ↓ .

Сульфат калия образуется в реакции обмена, протекающей между гидроксидом калия и сульфатом железа(\(III\)):
2 KOH + Fe SO 4 → K 2 SO 4 + Fe OH 2 ↓ .

10. Соли образуются в реакциях обмена, протекающих между другими солями.

Например, чтобы получить бромид серебра, можно в качестве исходных веществ использовать нитрат серебра и бромид калия:
Ag NO 3 + KBr → AgBr ↓ + KNO 3 .

1. Осадок, полученный при взаимодействии растворов сульфата железа(III) и нитрата бария, отфильтровали.Фильтрат обработали избытком едкого натрия. Выпавший осадок отделили и прокалили. Полученное вещество обработали избытком раствора соляной кислоты. Напишите уравнения описанных реакций.

2. Литий сплавили с серой. Полученную соль обработали разбавленной соляной кислотой, при этом выделился газ с запахом тухлых яиц. Этот газ сожгли в избытке кис­лорода, при этом выделился газ с характерным резким запахом. При пропускании этого газа в избыток гидрок­сида натрия образовалась средняя соль. Напишите урав­нения описанных реакций.

3. Нитрат калия подвергли термическому разложению. Вы­делившийся газ на свету пропустили через насыщенный раствор сероводорода в воде. Выпавшее вещество желтого цвета сплавили с железом, а полученную соль обработа­ли разбавленной соляной кислотой. Напишите уравнения описанных реакций.

4. Расплав хлорида натрия подвергли электролизу. Газ, вы­делившийся на аноде, прореагировал с водородом с обра­зованием нового газообразного вещества с характерным резким запахом. Его растворили в воде и обработали рас­четным количеством перманганата калия, при этом обра­зовался газ желто-зеленого цвета. Это вещество вступает при охлаждении в реакцию с гидроксидом натрия. На­пишите уравнения описанных реакций.

Сl2 + 2NaOH = NaCl + NaCIO + Н2O

5 Нитрат натрия сплавили с оксидом хрома в присутствии карбоната натрия. Выделившийся при этом газ прореаги­ровал с избытком раствора гидроксида бария с выпаде­нием осадка белого цвета. Осадок растворили в избытке раствора соляной кислоты и в полученный раствор доба­вили нитрат серебра до прекращения выделения осадка. Напишите уравнения описанных реакций.

6. Литий прореагировал с водородом. Продукт реакции рас­творили в воде, при этом образовался газ, реагирующий с бромом, а полученный раствор при нагревании проре­агировал с хлором с образованием смеси двух солей. На­пишите уравнения описанных реакций.

6. Натрий сожгли на воздухе. Образовавшееся при этом твердое вещество поглощает углекислый газ с выделе­нием кислорода и соли. Последнюю соль растворили в соляной кислоте, а к полученному при этом раствору до­бавили раствор нитрата серебра. При этом выпал белый творожистый осадок. Напишите уравнения описанных реакций.

7.Калий сплавили с серой. Полученную соль обработали со­ляной кислотой. Выделившийся при этом газ пропустили через раствор бихромата калия в серной кислоте. Выпав­шее вещество желтого цвета отфильтровали и сплавили с алюминием. Напишите уравнения описанных реакций.

8. Магний растворили в разбавленной азотной кислоте. К полученному раствору последовательно добавили ги­дроксид натрия, бромоводородную кислоту, фосфат на­трия. Напишите уравнения описанных реакций.

9.Кальций сожгли в атмосфере азота. Полученную соль разложили кипящей водой. Выделившийся газ сожгли в кислороде в присутствии катализатора, а к суспензии прибавили раствор соляной кислоты. Напишите уравне­ния описанных реакций.

Кальций реагирует с азотом с образованием нитрида кальция:

Под действием воды последнее соединение переходит в гидроксид кальция и аммиак:

Окисление аммиака кислородом в присутствии катализа­тора приведет к образованию оксида азота (II):

Гидроксид кальция вступает с соляной кислотой в реак­цию нейтрализации:

10. Барий растворили в разбавленной азотной кислоте, при этом выделился бесцветный газ — несолеобразующий ок­сид. Полученный раствор разделили на три части. Первую выпарили досуха, полученный осадок прокалили. Ко вто­рой части добавили раствор сульфата натрия до прекраще­ния выделения осадка; к третьей добавили раствор карбо­ната натрия. Напишите уравнения описанных реакций.

При окислении бария азотной кислотой выделяется ни­трат бария, оксид азота (I) и вода:

Термическое разложение нитрата бария приводит к об­разованию нитрита бария и кислорода:

В результате обменной реакции нитрата бария с сульфа­том натрия сульфат бария выпадет в осадок:

Взаимодействие карбоната натрия с нитратом бария пой­дет до конца, поскольку в осадок выпадет карбонат бария:

11. Алюминий вступил в реакцию с Fe304. Полученную смесь веществ растворили в концентрированном раство­ре гидроксида натрия и отфильтровали. Твердое веще­ство сожгли в атмосфере хлора, а фильтрат обработали концентрированным раствором хлорида алюминия. На­пишите уравнения описанных реакций.

В результате первой реакции образуется оксид алюминия и железо:

Из этой смеси веществ с концентрированным раствором гидроксида натрия будет реагировать оксид алюминия:

Твердый остаток представляет собой железо, которое при взаимодействии с хлором дает хлорид железа (III):

Взаимодействие тетрагидроксоалюмината натрия с хлори­дом алюминия приведет к образованию гидроксида алюми­ния и хлорида натрия:

12.Сульфат бария сплавили с коксом. Твердый остаток рас­творили в соляной кислоте, выделившийся газ вступил в реакцию с оксидом серы (IV), а раствор — с сульфитом натрия. Напишите уравнения описанных реакций.

Углерод восстанавливает сульфат бария до сульфида:

BaSO4 + 4С = BaS + 4CO↑

Последний реагирует с соляной кислотой с образованием сероводорода:

Взаимодействие сероводорода с оксидом серы (IV) дает серу и воду:

Хлорид бария вступает в обменную реакцию с сульфитом натрия

13. Кремний растворили в концентрированном растворе ги­дроксида натрия. Через полученный раствор пропустили углекислый газ. Выпавший осадок отфильтровали, вы­сушили и разделили на две части. Первую растворили в плавиковой кислоте, вторую сплавили с магнием. На­пишите уравнения описанных реакций.

Кремний реагирует с концентрированным раствором ги­дроксида натрия с образованием силиката натрия и выделе­нием водорода:

Под действием углекислого газа силикат натрия перехо­дит в карбонат натрия и оксид кремния:

Оксид кремния реагирует с фтороводородом с образова­нием фторида кремния и воды:

Оксид кремния реагирует с магнием с образованием кремния и оксида магния:

Si02 + 2Mg = Si + 2MgO.

14.Азот при нагревании на катализаторе прореагировал с водородом. Полученный газ поглотили раствором азотной кислоты, выпарили досуха и полученное кристалличе­ское вещество разделили на две части. Первую разложи­ли при температуре 190—240 °С, при этом образовался только один газ и водяные пары. Вторую часть нагрели с концентрированным раствором едкого натра. Напишите уравнения описанных реакций.

При взаимодействии азота и водорода образуется аммиак:

Его реакция с азотной кислотой приведет к нитрату ам­мония:

Разложение нитрата аммония может протекать по не­скольким направлениям, но только в одном из них образу­ется не смесь оксидов азота, а единственный его оксид:

При взаимодействии гидроксида натрия и нитрата аммо­ния образуются нитрат натрия, аммиак и вода:

15. Красный фосфор окислили кипящей азотной кислотой. Выделившийся при этом газ поглотили раствором ги­дроксида калия. Продукт окисления в первой реакции нейтрализовали гидроксидом натрия, а к образовавшейся реакционной массе по каплям добавили раствор хлорида кальция до прекращения выделения осадка. Напишите уравнения описанных реакций.

Азотная кислота окисляет фосфор до фосфорной кислоты; при этом также образуется оксид азота (IV) и вода:

Оксид азота (IV) диспропорционирует в растворе гидрок­сида калия:

Фосфорная кислота вступает в реакцию нейтрализации с гидроксидом натрия:

При взаимодействии фосфата натрия и хлорида кальция образуется фосфат кальция и хлорид натрия:

16. Кислород подвергли воздействию электроразряда в озо­наторе. Полученный газ пропустили через водный рас­твор йодида калия, при этом выделился новый газ без цвета и запаха, поддерживающий горение и дыхание. В атмосфере последнего газа сожгли натрий, а полу­ченное при этом твердое вещество прореагировало с углекислым газом. Напишите уравнения описанных реакций.

Кислород обратимо превращается в озон:

При реакции последнего с йодидом калия образуются йод, кислород и гидроксид калия:

Натрий окисляется кислородом воздуха до пероксида на­трия:

Взаимодействие последнего с углекислым газом приведет к образованию карбоната натрия и кислорода:

17. Концентрированная серная кислота прореагировала с ме­дью. Выделившийся при этом газ полностью поглотили избытком раствора гидроксида калия. Продукт окисле­ния меди смешали с расчетным количеством гидрокси­да натрия до прекращения выделения осадка. Последний растворили в избытке соляной кислоты. Напишите урав­нения описанных реакций.

При окислении меди концентрированной серной кисло­той образуются сульфат меди (II), оксид серы (IV) и вода:

Оксид серы (IV) реагирует с гидроксидом калия с обра­зованием средней соли:

При взаимодействии сульфата меди (II) с гидроксидом натрия при соотношении 1 : 2 выпадает осадок гидроксида меди (П):

Последнее соединение вступает в реакцию нейтрализации с соляной кислотой:

18. Хром сожгли в атмосфере хлора. К образовавшейся соли добавили по каплям гидроксид калия до прекращения выделения осадка. Полученный осадок окислили пере­кисью водорода в среде едкого калия и упарили. К по­лученному твердому остатку добавили избыток горячего раствора концентрированной соляной кислоты. Напиши­те уравнения описанных реакций.

Хром сгорает в атмосфере хлора с образованием хлорида хрома (III):

При взаимодействии этого соединения с гидроксидом ка­лия выпадает осадок гидроксида хрома(Ш):

Окисление гидроксида хрома (III) пероксидом водорода в щелочной среде протекает по следующему уравнению:

Хромат калия способен разлагаться разбавленными кис­лотами с образованием бихроматов, а с концентрированной горячей соляной кислотой вступает в окислительно-восста- новительную реакцию:

19. Перманганат калия обработали концентрированной го­рячей соляной кислотой. Выделившийся при этом газ собрали, а к реакционной массе по каплям прибавили раствор гидроксида калия до прекращения выделения осадка. Собранный газ пропустили через горячий раствор гидроксида калия, при этом образовалась смесь двух со­лей. Раствор выпарили, твердый остаток прокалили в присутствии катализатора, после чего в твердом остатке осталась одна соль. Напишите уравнения описанных ре­акций.

Перманганат калия окисляет соляную кислоту до хлора. При этом продуктом восстановления является хлорид мар­ганца (II):

Именно хлорид марганца (II) вступает в реакцию с ги­дроксидом калия:

При диспропорционировании хлора в горячей щелочи об­разуется смесь хлорида и хлората калия:

После испарения воды и нагревании выше температуры плавления хлорат калия разлагается по различным направ­лениям. В присутствии катализатора продуктами разложе­ния являются кислород и хлорид калия:

20. Простое вещество, полученное при нагревании фосфата кальция с коксом и оксидом кремния, сплавили с металлическим кальцием. Продукт реакции обработали водой, а выделившийся газ собрали и пропустили через раствор соляной кислоты. Напишите уравнения описанных реакций.


21. Осадок, полученный при взаимодействии растворов хлорида железа (ІІІ) и нитрата серебра, отфильтровали. Фильтрат обработали раствором едкого кали. Выпавший осадок бурого цвета отдели ли и прокалили. Полученное вещество при нагревании реагирует с алюминием с выделением тепла и света. Напишите уравнения описанных реакций.


22. Газ, выделившийся при взаимодействии хлористого водорода с перманганатом калия, реагирует с железом. Продукт реакци растворили в воде и добавили к нему сульфид натрия. Более легкое из образовавшихся нерастворимых веществ отделили и ввели в реакцию с горячей концентрированной азотной кислотой. Напишите
уравнения описанных реакций.


23. В раствор, полученный при взаимодействии алюминия с разбавленной серной кислотой, по каплям добавляли раствор гидроксида натрия до образования осадка. Выпавший осадок белого цвета отфильтровали и прокалили. Полученное вещество сплавили с карбонатом натрия. Напишите уравнения описанных реакций.


24. После кратковременного нагревания неизвестного порошкообразного вещества оранжевого цвета начинается самопроизвольная реакция, которая сопровождается изменением цвета на зелёный, выделением газа и искр. Твёрдый остаток смешали с едким кали и нагрели, полученное вещество внесли в разбавленный раствор соля-
ной кислоты, при этом образовался осадок зелёного цвета, который растворяется в избытке кислоты. Напишите уравнения описанных реакций.


25. Через раствор хлорида меди (ІІ) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной азотной кислоте. Образовавшийся при этом газ собрали и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.


26. Цинк растворили в очень разбавленной азотной кислоте и в полученный раствор добавили избыток щёлочи, получив прозрачный раствор. Напишите уравнения описанных реакций.


27. Азотную кислоту нейтрализовали пищевой содой, нейтральный раствор осторожно выпарили и остаток прокалили. Образовавшееся вещество внесли в подкисленный серной кислотой раствор перманганата калия, при этом раствор обесцветился. Азотсодержащий продукт реакции поместили в раствор едкого натра и добавили
цинковую пыль, при этом выделился газ с резким характерным запахом. Напишите уравнения -описанных реакций.


При взаимодействии цинка с раствором щёлочи выделяется атомарный водород, который является очень сильным восстановителем, поэтому нитрат натрия (нитрат -ион) восстанавливается до аммиака (уравнение 4)

28. К раствору хлорного железа добавили кальцинированную соду и выпавший осадок отделили и прокалили. Над полученным веществом пропустили при нагревании угарный газ и твёрдый продукт последней реакции ввели во взаимодействие с бромом. Напишите уравнения описанных реакций.


29. В раствор нитрата ртути (ІІ) добавили медную стружку После окончания реакции раствор профильтровали и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворялся с образованием раствора ярко-синего цвета. При
добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

30. Даны бром,йодид натрия,сера,азотная кислота. Напишите уравнения четырех возможных реакций между этими веществами.

Взаимодействие серы с бромом в инертной атмосфере приведет к образованию бромида серы(I):

Окисление серы азотной кислотой приведет к серной кислоте:

Концентрированная азотная кислота окисляет йодиды до йода:

Читайте также: