Органическая соль с хлором

15.1. Общая характеристика галогенов и халькогенов

Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns 2 np 5 , а халькогенов – ns 2 np 4 . Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.

Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S8, селен и теллур из полимерных молекул Sen и Ten. По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.

Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H2Э, могут образовывать и более сложные водородные соединения состава Н2Эn цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э2О7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО2 и ЭО3. Все эти оксиды кислотные.

Гидроксиды галогенов и халькогенов представляют собой оксокислоты.

Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl2·6H2O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.

Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl2 + H2 = 2HCl (при нагревании или на свету);
5Cl2 + 2P = 2PCl5 (при сжигании в избытке хлора);
Cl2 + 2Na = 2NaCl (при комнатной температуре);
3Cl2 + 2Sb = 2SbCl3 (при комнатной температуре);
3Cl2 + 2Fe = 2FeCl3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl2 + 2HBr = Br2 + 2HCl (в газовой фазе и в растворе);
Cl2 + 2HI = I2 + 2HCl (в газовой фазе и в растворе);
Cl2 + H2S = 2HCl + S (в растворе);
Cl2 + 2KBr = Br2 + 2KCl (в растворе);
Cl2 + 3H2O2 = 2HCl + 2H2O + O2 (в концентрированном растворе);
Cl2 + CO = CCl2O (в газовой фазе);
Cl2 + C2H4 = C2H4Cl2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:

Cl2 + 2OH
= Cl
+ ClO
+ H2O.

В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl2 и Ca(ClO)2, называемая хлорной известью.

С горячими концентрированными растворами щелочей реакция протекает иначе:

3Cl2 + 6OH
= 5Cl
+ ClO3
+ 3H2O.

В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:

И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H2SO4 = HCl + NaHSO4 (при комнатной температуре);
2NaCl + 2H2SO4 = 2HCl + Na2S2O7 + H2O (при нагревании).
Высший оксид хлора Cl2O7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO4, единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.

Cl2 при об. Т - газ желто-зеленого цвета с резким удушающим запахом, тяжелее воздуха - в 2,5 раза, малорастворим в воде (

6,5 г/л); х. р. в неполярных органических растворителях. В свободном виде встречается только в вулканических газах.

Основаны на процессе окисления анионов Cl -

2Cl - - 2e - = Cl2 0

Электролиз водных растворов хлоридов, чаще - NaCl:

Окисление конц. HCI различными окислителями:

Хлор - очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, превращаясь при этом в очень устойчивые анионы Cl - :

Активные металлы в атмосфере сухого газообразного хлора воспламеняются и сгорают; при этом образуются хлориды металлов.

Малоактивные металлы легче окисляются влажным хлором или его водными растворами:

Хлор непосредственно не взаимодействует только с O2, N2, С. С остальными неметаллами реакции протекают при различных условиях.

Образуются галогениды неметаллов. Наиболее важной является реакция взаимодействия с водородом.

В результате самоокисления-самовосстановления одни атомы хлора превращаются в анионы Cl - , а другие в положительной степени окисления входят в состав анионов ClO - или ClO3 - .

Cl2 + Н2O = HCl + НClO хлорноватистая к-та

Эти реакции имеют важное значение, поскольку приводят к получению кислородных соединений хлора:

КClO3 и Са(ClO)2 - гипохлориты; КClO3 - хлорат калия (бертолетова соль).

а) замещение атомов водорода в молекулах ОВ


б) присоединение молекул Cl2 по месту разрыва кратных углерод-углеродных связей

HCl - хлорид водорода. При об. Т - бесцв. газ с резким запахом, достаточно легко сжижается (т. пл. -114°С, т. кип. -85°С). Безводный НСl и в газообразном, и в жидком состояниях неэлектропроводен, химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Это означает, что в отсутствие воды хлороводород не проявляет кислотных свойств. Только при очень высокой Т газообразный HCl реагирует с металлами, причем даже такими малоактивными, как Сu и Аg.
Восстановительные свойства хпорид-аниона в HCl также проявляются в незначительной степени: он окисляется фтором при об. Т, а также при высокой Т (600°С) в присутствии катализаторов обратимо реагирует с кислородом:

Газообразный HCl широко используется в органическом синтезе (реакции гидрохлорирования).

1. Синтез из простых веществ:

2. Образуется как побочный продукт при хлорировании УВ:

R-H + Cl2 = R-Cl + HCl

3. В лаборатории получают действием конц. H2SO4 на хлориды:

H24(конц.) + NaCl = 2HCl↑ + NaHSО4 (при слабом нагревании)

H24(конц.) + 2NaCl = 2HCl↑ + Na24 (при очень сильном нагревании)

HCl очень хорошо растворяется в воде: при об. Т в 1 л Н2O растворяется

450 л газа (растворение сопровождается выделением значительного количества тепла). Насыщенный раствор имеет массовую долю HCl, равную 36-37 %. Такой раствор имеет очень резкий, удушающий запах.

Молекулы HCl в воде практически полностью распадаются на ионы, т. е. водный раствор HCl является сильной кислотой.

1. Растворенный в воде HCl проявляет все общие свойства кислот, обусловленные присутствием ионов Н +

а) с металлами (до Н):

б) с основными и амфотерными оксидами:

в) с основаниями и амфотерными гидроксидами:

г) с солями более слабых кислот:

Реакции с сильными окислителями F2, MnO2, KMnO4, KClO3, K2Cr2O7. Анион Cl - окисляется до свободного галогена:

2Cl - - 2e - = Cl2 0

Уравнения реакция см. "Получение хлора". Особое значение имеет ОВР между соляной и азотной кислотами:


а) с аминами (как органическими основаниями)

б) с аминокислотами (как амфотерными соедимнеиями)


Кислородсодержащие соединения хлора - чрезвычайно неустойчивые вещества, так как включают атомы Cl в нестабильных положительных с. о. Тем не менее некоторые из них имеют важное практическое значение.

Хлорорганическое соединение, хлоруглерод или хлорированный углеводород, - это органическое вещество, содержащее по крайней мере один ковалентно связанный атом хлора, который влияет на химическое поведение молекулы. Класс хлоралканов (алканы с одним или несколькими атомами водорода, замещенными хлором) дает общие примеры. Широкое структурное разнообразие и различные химические свойства хлорорганических соединений приводят к широкому спектру названий и областей применения. Органохлориды являются очень полезными веществами во многих областях применения, но некоторые из них представляют серьезную экологическую проблему.


Влияние на свойства

Хлорирование изменяет физические свойства углеводородов несколькими способами. Соединения, как правило, более плотные, чем вода, из-за более высокого атомного веса хлора по сравнению с водородом. Алифатические органохлориды являются алкилирующими агентами, потому что хлорид является уходящей группой.

Определение хлорорганических соединений


Многие такие соединения были выделены из природных источников, от бактерий до людей. Хлорированные органические соединения содержатся почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты. Органохлориды, включая диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам.

Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей. Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Широко известны и хлорорганические соединения в нефти (по ГОСТу - Р 52247-2004).

Эпибатидин

Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов. Лягушки получают эпибатидин через пищу, а затем изолируют его на коже. Вероятными источниками пищи являются жуки, муравьи, клещи и мухи.

Алканы

Алканы и арилалканы могут быть хлорированы в условиях свободных радикалов с ультрафиолетовым излучением. Однако степень хлорирования трудно контролировать. Арилхлориды могут быть получены галогенированием Фриделя-Крафтса с использованием хлора и кислотного катализатора Льюиса. Методы определения хлорорганических соединений включают в себя в том числе и применение этого катализатора. Другие методы также упомянуты в статье.

Реакция галоформа с использованием хлора и гидроксида натрия также способна генерировать алкилгалогениды из метилкетонов и родственных соединений. Хлороформ ранее производился таким образом.

Хлор добавляет к множественным связям алкены и алкины, давая ди- или тетрахлорсоединения.

Алкилхлориды

Алкилхлориды являются универсальными строительными блоками в органической химии. Хотя алкилбромиды и йодиды являются более реакционноспособными, алкилхлориды менее дорогие и более доступные. Алкилхлориды легко подвергаются атаке нуклеофилов.

Нагревание алкилгалогенидов с гидроксидом натрия или водой дает спирты. Реакция с алкоксидами или ароксидами дает эфиры в синтезе эфира Уильямсона; реакции с тиолами дают тиоэфиры. Алкилхлориды легко вступают в реакцию с аминами с образованием замещенных аминов. Алкилхлориды замещены более мягкими галогенидами, такими как йодид, в реакции Финкельштейна.

Также возможна реакция с другими псевдогалогенидами, такими как азид, цианид и тиоцианат. В присутствии сильного основания алкилхлориды подвергаются дегидрогалогенированию с образованием алкенов или алкинов.


Алкилхлориды реагируют с магнием с образованием реактивов Гриньяра, превращая электрофильное соединение в нуклеофильное. Реакция Вюрца восстанавливающим образом соединяет два алкилгалогенида с натрием.

Применение

Крупнейшим применением хлорорганической химии является производство винилхлорида. Годовой объем производства в 1985 году составил около 13 миллиардов килограммов, почти все из которых были преобразованы в поливинилхлорид (ПВХ). Определение хлорорганических соединений (по ГОСТу) является процессом, который невозможно совершить без специального стандартизованного оборудования.

Большинство низкомолекулярных хлорированных углеводородов, таких как хлороформ, дихлорметан, дихлорэтан и трихлорэтан, являются полезными растворителями. Эти растворители имеют тенденцию быть относительно неполярными; поэтому они не смешиваются с водой и эффективны при очистке, такой как обезжиривание и химическая чистка. Эта очистка также относится к методам определения хлорорганических соединений (нефть и другие вещества очень богаты этими соединениями).

Наиболее важным является дихлорметан, который в основном используется в качестве растворителя. Хлорметан является предшественником хлорсиланов и силиконов. Исторически значимым, но меньшим по масштабу является хлороформ, в основном предшественник хлордифторметана (CHClF2) и тетрафторэтена, который используется при производстве тефлона.

Двумя основными группами хлорорганических инсектицидов являются вещества типа ДДТ и хлорированные алициклические растворы. Механизм их действия немного отличается от хлорорганических соединений в нефти.

ДДТ-подобные соединения

Хлорированные циклодиены включают альдрин, дильдрин, эндрин, гептахлор, хлордан и эндосульфан. Длительность воздействия от 2 до 8 часов приводит к снижению активности центральной нервной системы (ЦНС), за которой следуют повышенная возбудимость, тремор, а затем приступы. Механизм действия заключается в связывании инсектицидов на участке ГАМК в комплексе ионофоров хлорида гамма-аминомасляной кислоты (ГАМК), который препятствует поступлению хлорида в нерв.

Другие примеры включают дикофол, мирекс, кепон и пентахлорфенол. Они могут быть либо гидрофильными, либо гидрофобными, в зависимости от их молекулярной структуры.

Дифенилы

Полихлорированные дифенилы (ПХД) когда-то были широко используемыми электрическими изоляторами и теплоносителями. Их использование, как правило, было прекращено из-за проблем со здоровьем. ПХБ были заменены полибромированными дифениловыми эфирами (ПБДЭ), которые вызывают аналогичные проблемы с токсичностью и биоаккумуляцией.

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, являются стойкими органическими загрязнителями, которые представляют опасность при их выбросе в окружающую среду, как и некоторые инсектициды (такие как ДДТ).

Например, ДДТ, который широко использовался для борьбы с насекомыми в середине 20-го века, также накапливается в пищевых цепях, как и его метаболиты DDE и DDD, и вызывает проблемы с репродуктивной системой (например, истончение яичной скорлупы) у некоторых видов птиц. Некоторые соединения такого типа, такие как серная горчица, азотная горчица и люизит, даже используются в качестве химического оружия из-за своей токсичности.

Интоксикация хлорорганическими соединениями


Однако наличие хлора в органическом соединении не обеспечивает токсичность. Некоторые органохлориды считаются достаточно безопасными для употребления в пищу и лекарства. Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту и подсластитель сукралоза (Splenda) широко используются в диетических продуктах.

По состоянию на 2004 год по крайней мере 165 органохлоридов были одобрены во всем мире для использования в качестве фармацевтических препаратов, включая природный антибиотик ванкомицин, антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционные препараты. анестетик изофлуран. Знать эти соединения обязательно для определения хлорорганических соединений в нефти (по ГОСТу).

Выводы ученых

В арктических районах особенно высокие уровни встречаются у морских млекопитающих. Эти химические вещества концентрируются у млекопитающих и даже содержатся в грудном молоке человека. У некоторых видов морских млекопитающих, особенно тех, которые производят молоко с высоким содержанием жира, у самцов, как правило, гораздо более высокие уровни, так как самки снижают концентрацию, передавая вещества потомству в результате лактации. Также эти вещества могут находиться в нефти, что важно учитывать во время определения хлорорганических соединений в нефти (по ГОСТу). Обычно это касается пестицидов, хотя может также относиться к любому соединению такого типа.

Хлорорганические пестициды можно классифицировать по их молекулярным структурам. Циклопентадиеновые пестициды представляют собой алифатические циклические структуры, полученные в результате реакций Пентахлорциклопентадиена Дильса-Альдера, и включают хлордан, нонахлор, гептахлор, эпоксид гептахлора, дильдрин, альдрин, эндрин, мирекс и кепон. Другими подклассами хлорорганических пестицидов являются семейство ДДТ и изомеры гексахлорциклогексана. Все эти пестициды имеют низкую растворимость и летучесть и устойчивы к процессам разрушения в окружающей среде. Их токсичность и стойкость в окружающей среде привели к их ограничению или приостановке для большинства видов применения в Соединенных Штатах.

Пестициды

Хлорорганические пестициды очень эффективны для уничтожения вредителей, особенно насекомых. Но многие из этих химических продуктов негативно воспринимаются экологическими активистами и потребителями из-за одного хорошо известного и ныне запрещенного хлорорганического пестицида: дихлордифенилтрихорэтана, более известного как ДДТ.

Хлорорганические пестициды относятся к химическим веществам с углеродом, хлором и водородом. Как пояснила Служба рыбного хозяйства и дикой природы США, хлор-углеродные связи особенно прочны, что не позволяет этим химическим веществам быстро разрушаться или растворяться в воде. Химическое вещество также привлекает жир и накапливается в жировой ткани животных, которые его потребляют.

Долговечность химического состава хлорорганических пестицидов является одной из причин, по которой он так же эффективен, как и инсектицид, и потенциально вреден - он может защищать сельскохозяйственные культуры в течение длительного времени, но также может оставаться в организме животного.

Наряду с ДДТ агентство по охране окружающей среды США запретило использование других хлорорганических пестицидов, таких как альдрин, дильдрин, гептахлор, мирекс, хлордекон и хлордан. В Европе аналогичным образом запрещены многие хлорорганические пестициды, но в обоих этих регионах хлорорганические химические вещества по-прежнему являются активными ингредиентами в ряде продуктов для борьбы с вредителями в домашних условиях, в саду и в окружающей среде, согласно данным EPA. Хлорорганические пестициды также чрезвычайно популярны в развивающихся странах по всему миру для использования в сельском хозяйстве.


Независимо от того, исследуете ли вы сельскохозяйственные угодья, чтобы убедиться, что они все еще заполнены летними хлорорганическими пестицидами, или осматриваете воду на наличие хлорорганических соединений, тестирование - лучший способ узнать, есть ли эти химические вещества рядом с вами. EPA методы 8250A и 8270B могут быть использованы для проверки этих химических веществ. 8250A может тестировать отходы, почву и воду, в то время как 8270B использует газовую хроматографию/масс-спектрометрию (ГХ/МС).

Хотя хлорорганические пестициды наиболее известны тем, что они наносят ущерб способности некоторых птиц откладывать здоровые яйца, известно, что эти химические вещества негативно влияют на людей, которые потребляют или вдыхают пестициды. Случайное вдыхание или употребление загрязненной рыбы или тканей животных является наиболее вероятным способом проглатывания хлорорганических пестицидов. Чтобы подтвердить, что кто-то имеет признаки отравления хлорорганическим соединением, кровь или мочу обычно отправляют в университет или государственное учреждение, которое использует ГХ/МС для проверки химических соединений.

Признаки отравления

Предупреждающие признаки токсичности хлорорганических пестицидов включают судороги, галлюцинации, кашель, кожную сыпь, рвоту, боль в животе, головные боли, спутанность сознания и, возможно, дыхательную недостаточность согласно Мэтью Вонгу, доктору философии, доктору философии, и медицинскому центру Beth Israel Deaconess, Medscape. Хотя в США и Европе существуют запреты на многие из этих пестицидов, их использование в других частях света и хранение в некоторых частях США и Европы создают ситуации, когда отравления хлорорганическими соединениями все еще возможны.

Хлорорганические пестициды включают в себя большое количество стойких химических веществ, которые являются одновременно эффективными и несут значительный риск по всему миру.

Хотя галогенированные органические соединения относительно редки по природе по сравнению с негалогенированными, многие такие соединения были выделены из природных источников, от бактерий до людей. Существуют примеры природных хлорсодержащих соединений, обнаруживаемых почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты.

Органохлориды, в том числе диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам. Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей.

Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов.


Диоксины

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, и некоторые инсектициды, такие как ДДТ, являются стойкими органическими загрязнителями, которые представляют опасность для окружающей среды. Например, чрезмерное использование ДДТ в середине двадцатого века, которое накапливается у животных, привело к серьезному сокращению популяций некоторых птиц. Хлорированные растворители при неправильном обращении с ними и их утилизации создают проблемы с загрязнением подземных вод.

Некоторые органохлориды, такие как фосген, даже использовались в качестве боевых отравляющих веществ. Некоторые из искусственно созданных и токсичных органохлоридов, таких как ДДТ, будут накапливаться в организме с каждым воздействием, что в конечном итоге приведет к смертельному количеству, потому что организм не может их разрушить или избавиться от них. Однако присутствие хлора в органическом соединении никоим образом не обеспечивает токсичность. Многие хлорорганические соединения достаточно безопасны для употребления в пищу и лекарства.

Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту (4-Cl-IAA) и подсластитель сукралоза (Splenda) широко используются в диетических продуктах. По состоянию на 2004 год во всем мире было одобрено, по меньшей мере, 165 хлорорганических соединений для применения в качестве фармацевтических препаратов, включая антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционный анестетик изофлуран.


Открытие Рэйчел Карсон

Хлорорганические соединения (по ГОСТу) входят в список веществ, опасных для человека.


Добываемое из нефтяных скважин сырье представляет собой многокомпонентную и многофазную систему. Различают пластовую, сырую и товарную нефть. Элементный состав нефти зависит от месторождения. Хлор входит в состав природной нефти в небольших количествах и только в виде неорганических хлоридов. Обзорная статья о хлорорганике в нефти доступна по ссылке.

Откуда берутся органические хлориды в нефти

Хлорорганика (ХОС) включает любые органические соединения, в которых, по крайней мере, один атом водорода замещен на один атом хлора, т.е. в структуре присутствует одна и более ковалентная связь C-Cl. ХОС получают синтетическим путем, применяя их в технологических целях.

Как попал органический хлор в состав нефти, если ХОС имеют искусственное происхождение?

Низкомолекулярные гомологи хлоралканов, хлоралкенов, арилгалогениды - эффективные растворители, которые используют для обезжиривания, растворения парафинов и других плохо растворимых, в том числе и полимерных, соединений. Такие соединения эффективно применяют в составе технологических жидкостей при бурении скважин для их промывки, глушения, увеличения извлекаемых объемов и т.д. Таким образом, причины загрязнения сырого необработанного продукта связаны с применением хлорорганики при добыче нефти.

Реагенты, используемые при транспортировке, переработке и хранении также будут источниками хлоридов в нефти.

Зачем добавляют реагенты

Нефтепромышленные реагенты - это специально разработанные композиции, влияющие на свойства нефти или нефтепродуктов в процессе добычи, транспортировки и переработки.

Выделяют несколько групп реагентов:

эмульгаторы и деэмульгаторы;

ингибиторы асфальтосмолопарафиновых отложений (АСПО);

При выборе реагента следует учитывать такие факторы, как производительность, эффективность, стойкость, безопасность, цена, совместимость и ограничения, в том числе связанные и с содержанием хлорорганических соединений. После запрета на использование хлорорганики предпочтения отдаются реагентам, которые не включают в состав ХОС. Однако, в некоторых случаях, применение органических хлоридов способствует повышению эффективности процессов.

Зачем в нефть добавляют хлор в составе органических соединений

Смолисто-асфальтеновая и смолисто-парафиновая фракции нефти представляют из себя коллоидные растворы, обладающие повышенной вязкостью. Эти фракции состоят из высокомолекулярных гетероциклических соединений, содержание которых в нефти в некоторых случаях может доходить до 25 – 50% по массе. Снижение вязкости и растворение смол необходимо для увеличения нефтеотдачи пластов, для чего используют хлорорганические соединения.

Образование вязких отложений, таких как АСПО, происходит не только в пластах, но и внутри добывающего и транспортирующего оборудования. По мере того как образуются и накапливаются отложения, также возникает необходимость использования хлорорганических растворителей для промывания бурового оборудования, нефтепроводов и резервуаров для хранения и т.д.

Зачем в нефть добавляют хлориды неорганического происхождения

Нефтепромышленные реагенты могут представлять собой источник и других хлорсодержащих примесей в нефти. Так, например, для предотвращения микробиологической коррозии нефтедобывающего оборудования используют бактерициды, которые подавляют рост анаэробных бактерий, таких как сульфовосстанавливающие. В составе таких средств используют органические соли – хлориды четвертичных аминов.

Для решения проблемы солеотложения разработаны различные ингибиторы этого процесса, содержащие гидрохлориды органических аминов, сахаров, хлорид натрия.

Таким образом, становится понятно, откуда берутся неорганические хлориды в нефти после ее отмывки и предварительной очистки.

Причиной попадания хлора в конечные нефтепродукты также является использование различных реагентов. По мере того как образуются продукты распада ХОС, ускоряется процесс коррозии и износ оборудования.

О методах очистки от хлороорганических соединений можно почитать в следующей статье.

  • 11 Июня 2019

Поставщик аналитического и лабораторного оборудования для нефтехимической отрасли. Официальный представитель MITSUBISHI CHEMICAL ANALYTECH CO., LTD. в России и странах СНГ.

Адрес: 119071, г. Москва, 2-й Донской проезд, д. 10, стр. 4

Читайте также: