Аутологичные вакцины в онкологии

Клеточные технологии сегодня получают практическое применение в самых разных областях отечественной медицины – от косметологии до кардиологии. Но если в одних случаях клеточные продукты используются пока в экспериментальном порядке или проходят стадию клинических исследований, то в других – уже имеют статус терапевтически эффективной и одобренной регуляторами методики. Наиболее яркий пример клинического внедрения – иммунотерапия злокачественных новообразований с помощью дендритно-клеточной вакцины, созданной 20 лет назад в Санкт-Петербурге учеными НИИ (сейчас – НМИЦ) онкологии им. Н.Н. Петрова. О том, в каких обстоятельствах рождалась и отрабатывалась уникальная методика, Vademecum рассказала один из ее авторов – руководитель Центра клеточных технологий и научного отдела онкоиммунологии НМИЦ Ирина Балдуева.

– В чем суть терапии с помощью дендритно‑клеточной вакцины?
– Если объяснять упрощенно, то мы берем у пациента образец опухоли, которая уже не отвечает на другие методы лечения, выделяем опухолевые клетки и клетки крови и в лабораторных условиях модифицируем их таким образом, чтобы иммунная система начинала их распознавать, а затем вводим полученную дендритную вакцину пациенту. Дендритные клетки умеют распознавать антигены опухолевых клеток (раково‑тестикулярные антигены) и помогают иммунной системе с ними справляться.

– Как давно вы занялись этой темой?

– После медицинского училища я поступила в мединститут и параллельно работала медсестрой в хирургическом отделении. Там я часто общалась с онкологическими больными, и каждый говорил о том, как ему хочется жить – хотя бы еще несколько лет. Мне уже тогда стало ясно, что та же, например, химиотерапия помогает далеко не всем, высока вероятность прогрессирования заболевания, и надо что‑то делать, искать то, что сможет помочь этим людям. Я стала эту тему исследовать, на втором курсе института поняла, что следует сосредоточиться на иммунной системе, которая отвечает за многие изменения в организме, в том числе за борьбу с инфекционными, аутоиммунными и онкологическими заболеваниями. Так я стала изучать иммунологию. После института по распределению Минздрава я попала в НИИ онкологии им. Н.Н. Петрова. Специальности иммунолога тогда, конечно, не существовало, поэтому я занялась наукой. Параллельно работала в 31‑й городской больнице, где позже возглавила лабораторию иммунологии – там пришлось работать с клетками костного мозга, используемыми сегодня при изготовлении дендритно‑клеточных вакцин. И когда в 1998 году мне предложили войти в научную группу в НИИ онкологии в качестве иммунолога, я не раздумывая согласилась.

– Почему иммунология стала интересна НИИ онкологии?

– Минздрав выделял средства на научную работу института, а так как направление было признано перспективным, его постоянно поддерживали. В развитие темы вкладывал собственные средства и сам НИИ.

– А за рубежом в то время иммунотерапию изучали, практиковали?

– Из научной литературы я знала, что дендритными клетками занимаются в Париже в Онкологическом институте Густава Русси, и курирует там это направление Лоранс Зитвогель. Мы ей написали, пригласили в Петербург. Она приехала, посмотрела, дала множество дельных советов. Потом я отправилась на стажировку в ее институт. Сама Зитвогель училась в Америке, где подобные лаборатории появились заметно раньше. Она рассказывала, как трудно было организовать ее лабораторию в Париже, притом что работала она на том этапе только с дендритными клетками подопытных мышей. Первые человеческие дендритные клетки в лаборатории Зитвогель получили к 2000 году, параллельно с нами. Так что можно сказать, что в Европе НИИ им. Н.Н. Петрова был в этой тематике одним из первых, а в 2003‑2004 годах это удалось сделать коллегам из РОНЦ им. Н.Н. Блохина.

– Какие практические результаты принесли ваши исследования на сегодняшний день?

– То есть дендритно‑клеточная вакцина под действие 180‑ФЗ не подпадает?

– Нет. По идее, производство и применение таких вакцин должны регулироваться отдельным законом – о минимально манипулируемом клеточном продукте. Такого документа пока нет, и неизвестно, когда он появится. Дело в том, что 180‑ФЗ распространяется на клеточные линии, которые получаются в результате размножения в лаборатории, а у нас они скорее созревают в лабораторных условиях – мы их учим распознавать опухолевые антигены. Тот самый закон, которого пока нет, должен будет распространяться на все виды трансплантации костного мозга, не подпадающей под действие 180‑ФЗ. Получается, две наши дендритные вакцины – единственные легитимно используемые у нас в стране: на их применение есть разрешение Росздравнадзора, а 180‑ФЗ на них не распространяется. Все остальные существующие в отрасли продукты (включая другие наши разработки), подпадающие под действие 180‑ФЗ, пока не зарегистрированы и применяться не могут. Причем у некоторых коллег были подобные нашим разрешения Росздравнадзора на использование клеточных технологий – в косметологии, комбустиологии, но с появлением 180‑ФЗ, пусть толком и не работающего, их применение стало невозможным.

– Как ваши вакцины работают?

– С 1998 года мы пролечили более 700 человек. Основные профили и локализации – меланома, саркома мягких тканей, рак кишечника, молочной железы, почек. Все эти новообразования являются иммуногенными. Когда уже появляются метастазы, тогда этих иммуногенных антигенов становится все больше. Так что наша вакцина рассчитана на пациентов с исчерпанными возможностями. Удается продлить их жизнь как минимум на год.

– То есть полностью излечиться с помощью дендритно‑клеточной вакцины нельзя?

– У нас есть в практике такие случаи, например, при меланоме. Есть пациенты, которые продолжают лечение в течение 10 лет – болезнь отступила, но сохранился риск, что заболевание вернется и вернется в иной форме. Бывало, пациент полностью излечился от саркомы мягких тканей, а через четыре года у него появились метастазы в головном мозге. Клетки скрылись от иммунной системы, в какой‑то момент активизировались и спровоцировали рецидив, который оказался крайне агрессивным. Именно поэтому мы не только проводим иммунотерапию, но и в целом занимаемся иммунной системой пациента. Обычно иммунитет истощен, его надо восстанавливать, чтобы у клеток появились силы отвечать на наше лечение. Это не так просто, система может заработать через месяц, а может и через два‑три.

– Есть мнение, что методики, подобные вашей, следует использовать на более ранних стадиях онкозаболеваний, не подвергая пациента лучевой и химиотерапии. Что вы по этому поводу думаете?

В нашем центре прием ведут пять таких специалистов. К нам приходит пациент, и мы определяем, что ему необходимо – можно ли сейчас подключить ему иммунотерапию. То есть мы уже на том клиническом пути, о котором вы говорите.Что является препятствием? К сожалению, и консультации, и сама иммунотерапия осуществляются только на платной основе. Пока у государства нет возможности поддерживать это направление. Хотя иммунотерапию можно было бы использовать в качестве высокотехнологичной медицинской помощи. Мы подавали наши протоколы в Минздрав, но нам ответили: надо дождаться появления закона о минимально манипулируемых клеточных продуктах. При этом иммунотерапия нисколько не дороже некоторых онкопрепаратов.

– Каково, по вашим расчетам, соотношение стоимостей этих методик?

– Например, первая линия химиотерапии при саркоме мягких тканей недорогая. А вот совокупные затраты на вторую линию химиотерапии в целом по России достигают от 0,4 до 4,1 млрд рублей в год. Такая вилка связана с разницей в цене препаратов. Вакцину близко не сравнить по стоимости – это 43 тысячи рублей за одно введение. Как правило, пациенты лечатся в течение первого года ежемесячно, второго года – раз в три месяца, и третьего – раз в полгода. А дальше уже остается только наблюдение. Мы удешевили весь процесс до минимума, отработана каждая доза. У нас даже диссертационная работа на эту тему есть.

– За счет чего курс лечения можно удешевить? Более точно рассчитывать дозы?

– Опытным путем мы стали уменьшать дозу вакцины, смотреть, при каком ее минимальном объеме сохраняется активность клеток, какие нужны для этого внешние условия. Можно сэкономить на компонентах вакцины. Например, ростовой фактор – это отдельный препарат, который сегодня уже производится и в России. Питательных, культуральных сред, факторов дифференцировки недостаточно, если их будет больше, мы сможем еще снизить стоимость курса лечения. Среды, например, мы покупаем в Германии. Хорошо бы иметь отечественный аналог. Еще одна проблема – расходные материалы из пластика: мы используем импортные изделия, потому что у нас их выпуск не налажен.

– Как пациенты вас находят? Вы вкладываетесь в продвижение?

– Нет, здесь работает так называемое сарафанное радио. Пациенты и их родственники очень много общаются друг с другом, много читают, ищут варианты. Очень многие уезжают на такое лечение за рубеж, например, в Израиль, а когда у них кончаются деньги, им говорят, что то же самое можно сделать в Санкт‑Петербурге.

– Куда, помимо Израиля, уезжают лечиться российские пациенты?

– Германия, Канада, США, Япония. Везде это очень дорого. И наша задача в том, чтобы это направление у нас не свернулось из‑за банального отсутствия госфинансирования, работающих законов и так далее.

– Вы рассматриваете в перспективе создание на базе НМИЦ онкологии лаборатории полного цикла, способной обеспечивать вакцинами другие клиники?

– Конечно, такие планы есть. Но в нынешних неопределенных условиях мы пока можем только объединиться с коллегами. В ближайшее время мы организуем Ассоциацию биомедицинских клеточных продуктов, как раз призванную развивать полный цикл производства, – ради снижения стоимости вакцин и других продуктов. В Петербурге есть почти все для этого – я имею в виду предприятия, которые производят компоненты для вакцины. Для организации полного цикла нужно лицензировать производство, получить сертификат GMP, все это требует для начала нормативного обоснования, а затем финансов. Сейчас готовится Национальная программа по борьбе с онкозаболеваниями, надеюсь, и на наше направление получится изыскать средства.

– У ассоциации уже есть конкретные предложения по развитию отрасли?

– Да, мы подготовили целый пакет различных уточнений и предложений. Важно обозначить в подзаконных актах, каким образом будет осуществляться лицензирование производства, какие требования следует предъявлять к средам и самому продукту, какую подготовку должны иметь биотехнологи. Кроме того, мы предлагаем Минздраву сохранить уже существующие наработки. Важно, чтобы нас не отбросили снова на экспериментальную стадию. Проверить еще раз эффективность разработок можно, главное, чтобы в целом процесс не останавливался.

– Когда вы ожидаете принятия закона о минимально манипулируемых клеточных продуктах?

– Мы понимаем, что документ будет принят в обозримом будущем, и надеемся, что он будет более тщательно проработан, чем 180‑ФЗ. Мы в любом случае сделаем все, чтобы ему соответствовать. Но самым важным остается вопрос финансирования. Как обычно бывает? Научное учреждение разрабатывает и передает компетенции клинике или фармкомпании. Мы не против такого пути, но необходимо, чтобы разработки и их авторы достойно финансировались. Зарплаты в науке и в практической сфере кратно разнятся, и не в пользу ученых. А мы готовим специалистов не для того, чтобы они куда‑то ушли. Мы не бедствуем, зарабатываем как можем сами, также лаборатория получает дополнительные средства из бюджета Центра, но тем не менее.

Keshelava V.V.
Federal State Enterprise “Russian Scientific Center of Roentgenoradiology of Russian Health and Social Development Ministry”.

Abstract
The progress in oncological diseases treatment is due to significant achievements of molecular biology, immunology and development of immunotherapy methodology. One of the most perspective methods is known to be antitumor vaccination with vaccines containing intact tumor cells (autologic and allogenic), autologic hit shock proteins, Newcastle disease virus (NDV).
Antitumor vaccines generation methods and their role in cancer prophylaxis and treatment has been worked out and recognized. Wide experience of these vaccines usage has been collected by clinical oncologists and their effectiveness has been recognized by many clinics over the world.
Autologic vaccine consists of tumor cells exposed during the tumor extraction.
The interclinical prospective nonrandomized research of vaccines’ effectiveness and toxicity held in 2004–2006 included 46 patients with skin melanoma (9 patients), breast cancer (21 patient), large intestine cancer (7 patients), cervix cancer (5 patients), ovarian cancer (1 patient), uveal melanoma (2 patients), vagina cancer (1 patient). Medium age of the patients was 54,2.The majority of patients suffered disseminated tumor process with multiple metastasis affecting several organs and resistant to radial and chemotherapy. Almost all patients were treated on an outpatient basis. So they were leading their common life during the treatment. There were no complications noticed. At the end of the first course of treatment pain and metastasis were reduced, the patients rejected narcotics and anaesthetics, became active, their appetites and weight improved. Due to low toxicity it became possible to continue treatment up to one year and even longer to get stable results.

За последние годы в онкологии сделано много, но решающего прорыва не произошло. Все чаще в отечественной и зарубежной литературе появляются сообщения несколько сенсационного плана, свидетельствующие о переломном моменте в лечении больных раком. Прогресс в лечении онкологических заболеваний связан с существенным прорывом в молекулярной биологии, иммунологии, развитии методов иммунотерапии, из которых наиболее перспективным представляется создание противоопухолевых вакцин: на основе цельных опухолевых клеток (аутологичных и аллогенных); ДНК или РНК – вакцины; рекомбинантные вирусные или бактериальные вакцины; вакцины на основе аутологичных белков теплового шока и др. (1,2,7.8).

Клиническая онкология имеет большой опыт использования противоопухолевых вакцин эффективность применения которых доказана во многих клиниках мира. При этом разработаны и общепризнанны методы получения противоопухолевых вакцин и определено их место в профилактике и лечении рака (2.3.5.7.8.).

Клетки собственных опухолей, полученные при операции или биопсии, широко используются в мировой онкологической практике для получения иммунотерапевтических препаратов для того же самого пациента. Основной задачей при такой терапии является повышение иммуногенности собственных опухолевых клеток с помощью химической обработки - гаптенизации, генетической модификации - трансфекцией генов кодирующих стимулирующие иммунитет молекулы и вирусной модификации. Последний подход является наиболее технологичным при использовании вируса селективно заражающего опухолевые клетки. Таковым является вирус болезни Ньюкасла (ВБН) - псевдочумы птиц, точнее его вакцинные штаммы – генетически стабильные, апатогенные для млекопитающих, живые вирусные препараты, повсеместно используемые для профилактики заболевания у кур. Преимущественное размножение этого вируса в опухолевых клетках млекопитающих было продемонстрировано более 40 лет назад. С этого времени большим количеством экспериментов на опухолях животных доказана безвредность ВБН для млекопитающих и его достаточно высокая терапевтическая эффективность, особенно в случае сочетания онколитического действия с иммунизирующим воздействием зараженных вирусом опухолевых клеток

Существует множество различных штаммов ВБН, все они классифицированы как литические (лизирующие клетки: МТН-68,73-Т, Roakin, PV701) и нелитические (Ульстер) для человеческих клеток и изучались как противораковые агенты(4-8).

Исследователи при этом предполагают три клеточных механизма взаимодействия. Первый механизм – литические штаммы вируса напрямую уничтожают опухоли. Второй – с помощью нелитических штаммов белки вируса проникают в мембрану опухолевых клеток, вызывая иммунную реакцию. И, наконец, сам вирус может стимулировать организм носителя вырабатывать цитокины: интерфероны и фактор некроза опухоли (TNF), что ведет в свою очередь к активации естественных клеток-убийц, макрофагов и сенсибилизированных Т-клеток.

Вместе с тем есть много вопросов в клеточном механизме взаимодействия вируса с организмом. Не совсем ясно, какой из штаммов более эффективен, а также что эффективнее - собственные опухолевые клетки пациента или опухолевые клеточные линии.

Экспериментальные исследования на животных показали, что ВБН и зараженные ВБН раковые клетки могут стимулировать большое разнообразие иммунных ответов, что способствует успешной терапии рака. Доказано - ВБН безопасен, лечение считается безвредным. Эффективность метода в той или иной мере подтверждена клиническими наблюдениями на пациентах с различными злокачественными новообразованиями (II – III фазы испытаний) проведенными в США, Европе и Китае. Представлены результаты исследований использования онколизатов (штамм ВБН 73-Т для лечения метастатической меланомы, а так же рака почки, молочной железы и яичников), цельноклеточных вакцин (штамм ВБН Ульстер для лечения колоректального рака, рака яичников почки, шейки матки) и заражение пациентов литическим штаммом ВБН МТН-68 для лечения рака толстой кишки, желудка, поджелудочной железы, легких и др. (6.7.8)

Во всех случаях отмечен положительный эффект применения, как чисто вирусной терапии, так и аутологичной вакцинации вирус модифицированными опухолевыми клетками. Некоторые противоопухолевые вакцины в настоящее время завершают III фазу клинических испытаний и по мнению большинства исследователей уже в недалеком будущем активная иммунотерапия станет стандартным методом и частью комплексного лечения рака (4-8).

Нами проанализированы результаты и возможности вакцинотерапии большинства клиник, обобщен опыт работы общепризнанных специалистов и с 2003 года начаты экспериментальные и клинические исследования по данной проблеме в рамках допустимых и принятых медицинских программ с учетом мирового опыта в процессе клинических испытаний, в том числе и России.

Была поставлена задача оптимизации и совершенствования имеющихся технологий получения аутологичных и модифицированных ВБН вакцин, а также онколитического ВБН для использования у пациентов с различными злокачественными заболеваниями.

Применяемый нами вирус Болезни Ньюкасла, живая вакцина для птицеводства, апатогеный штамм Ла-Сота выращивается в свободных от патогенной микрофлоры куриных эмбрионах. Для внесения в человеческие опухолевые клетки и для инъекций пациентам вирус очищали ультрацентрифугированием и проверяли на стерильность и безвредность. Оценка токсичности препарата (вакцины) проводилась в соответствии с критериями, рекомендованными ВОЗ. Препарат при необходимости может быть лиофилизован, сохраняя при этом свои свойства в течение одного года.

Для приготовления аутологичной вакцины используют опухолевые клетки, выделенные непосредственно в ходе удаления опухоли. Технология приготовления вакцины общеизвестна и предполагает дезагрегацию образцов опухоли, культивирование клеток, облучение клеток с целью блокады их пролиферативной активности и различные приемы модификации с целью повышения ее эффективности. Этап создания культуры опухолевых клеток представляет собой сложный и неоднозначный процесс. По мнению абсолютного большинства исследователей, существуют значительные трудности и особенности в создании условий, благоприятных для индивидуальных первичных культур опухолевых клеток. Выживание клеток и их пролиферация возможны только лишь при воссоздании всех внешних условий, которые клетки имели in vivo. Разработанные и применяемые нами оригинальные технологии выделения и культивирования клеток позволяют получить пролиферирующие первичные культуры более чем 70% случаев для таких опухолей как меланома кожи, рак почки, толстой кишки, яичников и молочной железы, а клеточные линии – не менее чем в 50% случаев.

Не менее специфичным в процессе приготовления клеточных вакцин является необходимость инактивировать их способность к размножению с одновременным сохранением их метаболической активности и повышения иммуногенности собственных опухолевых клеток с помощью вирусной модификации. На данном этапе клетки инактивировали гамма-излучением (дозы облучения подбирали индивидуально), замораживали в жидком азоте и использовали для вакцинации в дозах 10 – 50 млн. после обработки 10 - 100 ID50 вируса (ВБН) на клетку.

Более специфическую аутовакцину получали из размножающихся in vitro клетках – перевиваемых опухолевых линиях. Такие линии могут быть получены из операционного или биопсийного материала и могут размножаться бесконечно долго, обеспечивая необходимое для вакцинации количество гомогенных опухолевых клеток. Эти линии также замораживали, инактивировали гамма-излучением и обрабатывали вирусом перед введением пациентам.

Известно, принцип действия противоопухолевых вакцин основан на усилении противоопухолевой защиты, заложенной в природе иммунитета здорового человека. Недостаточность противоопухолевого иммунитета обусловлена растущей опухолью и/или прогрессированием с возникновением множества метастазов и иммунодепрессивным эффектом противоопухолевой химиотерапии и облучения.

Усиление эффективности противоопухолевых вакцин путем повышения иммуногенности опухолевых антигенов нами достигалась модификацией вакцины непатогенным вирусом (ВБН) и использованием человеческого рекомбинантного гранулоцитарного колониестимулирующего фактора (Г-КСФ). Основное биологическое действие Г-КСФ – гемопоэтическое, главным образом нейтрофилопоэтическое. Его введение в организм приводит к увеличению содержания в крови функционально активных нейтрофилов. Кроме этого препарат повышает биохимическую (синтез протеаз), фагоцитарную, хемотаксическую активности, усиливает в организме синтез других цитокинов (интерферонов, трансформирующего фактора роста β и др.). Тем самым активизируются различные неспецифические и специфические механизмы защиты организма.

Предварительная клиническая и иммунологическая оценка эффективности вакцинотерапии в сочетании с Г-КСФ, а так же наличие клеточных линий полученных на этапах создании позволили пересмотреть принципы и подходы химиотерапии в данном комплексе лечения. Правильный подбор препаратов избирательно действующих на опухолевые клетки, выбор оптимальной дозы, режима и способа применения позволяли проводить курсы химиотерапии длительно без каких-либо осложнений в течение всего курса вакцинотерапии.

Предполагая данную комплексную методику лечения рака, мы учитывали те слабые сторон аутовакцин, где результат зависит от индивидуальных особенностей противоопухолевого иммунитета, а опухоль характеризуется не только множественностью антигенов, но и повышенной мутационной активностью с дальнейшим усилением признаков злокачественности.

Проведенные медико-биологические исследования показали высокую эффективность предлагаемой модели патогенетической терапии и позволили с учетом в рамках допустимых и принятых медицинских программ провести клинические испытания на определенной группе больных с различными злокачественными новообразованиями.

Цель данного исследования: оценить объективный непосредственный эффект и его продолжительность, время до прогрессирования, выживаемость, качество жизни больных с различными злокачественными заболеваниями при использовании как аутологичных, облученных вакцин модифицированных ВБН (группа А), так и получивших онколитический вирус ВБН в чистом виде (группа В) в плане комплексного лечения.

Для отбора больных были использованы общепринятые в клинической практике критерии.
Критерии включения:

  1. Гистологически верифицированный диагноз опухолевого очага
  2. Возраст старше 18 лет
  3. Общее удовлетворительное состояние (индекс Карновского не менее 70%)
  4. Отсутствие противоопухолевого эффекта лечения на фоне ранее проводимого лечения или наличие признаков прогрессирования после их проведения.
  5. Возможность визуальной или инструментальной оценки динамики изменений
  6. Согласие больного на участие в данном исследовании.
Критерии исключения:
  1. Поражение центральной нервной системы
  2. Активный аутоиммунный процесс
  3. Возраст старше 70 лет
  4. Больные с одной из перечисленных инфекций: HIV, HBV, HCV.
  5. Наличие инфекционных или тяжелых заболеваний сердечно-сосудистой, нервной, дыхательной или эндокринной систем; беременность или лактация
  6. Нарушение функции печени и/или почек (билирубин >1,5хN, креатинин >1,5хN), показатели крови: лейкоциты 9 /Л, Hb

    Список использованной литературы

    1. Гриневич Ю.А. Фильчаков Ф.В. Адаптивная иммунотерапия и ее влияние на эффективность лечения онкологического профиля. Онкология 2003 т.5 №2 с. 90-95.
    2. Хансон К.П., Моисеенко В.М. Биотерапия злокачественных новообразований. Проблемы клинической медицины №3 2005г.с.10-15.
    3. Steiner, H. H., Bonsanto, M. M., Beckhove, P., Brysch, M., Geletneky, K., Ahmadi, R., Schuele-Freyer, R., Kremer, P., Ranaie, G., Matejic, D., Bauer, H., Kiessling, M., Kunze, S., Schirrmacher, V., Herold-Mende, C. (2004). Antitumor Vaccination of Patients With Glioblastoma Multiforme: A Pilot Study to Assess Feasibility, Safety, and Clinical Benefit. J Clin Oncol 22: 4272-4281
    4. Washburn, B., Weigand, M. A., Grosse-Wilde, A., Janke, M., Stahl, H., Rieser, E., Sprick, M. R., Schirrmacher, V., Walczak, H. (2003). TNF-Related Apoptosis-Inducing Ligand Mediates Tumoricidal Activity of Human Monocytes Stimulated by Newcastle Disease Virus. J Immunol 170: 1814-1821
    5. Pecora, A. L., Rizvi, N., Cohen, G. I., Meropol, N. J., Sterman, D., Marshall, J. L., Goldberg, S., Gross, P., O'Neil, J. D., Groene, W. S., Roberts, M. S., Rabin, H., Bamat, M. K., Lorence, R. M. (2002). Phase I Trial of Intravenous Administration of PV701, an Oncolytic Virus, in Patients With Advanced Solid Cancers. J Clin Oncol 20: 2251-2266
    6. Nakaya, T., Cros, J., Park, M.-S., Nakaya, Y., Zheng, H., Sagrera, A., Villar, E., Garcia-Sastre, A., Palese, P. (2001). Recombinant Newcastle Disease Virus as a Vaccine Vector. J. Virol. 75: 11868-11873
    7. Csatary, L. K., Csatary, E., Moss, R. W. (2000). Re: Scientific Interest in Newcastle Disease Virus Is Reviving. J Natl Cancer Inst 92: 493-493
    8. Nelson, N. J. (2000). RESPONSE: Re: Scientific Interest in Newcastle Disease Virus Is Reviving. J Natl Cancer Inst 92: 493a-494 .


    • В Петербурге создали первую в России систему контроля за диагностикой рака

    • Россия не сможет победить рак с серпом и молотом

    • Молчание поневоле. Как помочь, если голос пропал

    В НИИ онкологии им. Петрова научились продлевать жизнь пациентам с агрессивными и запущенными формами рака. Им вводят разработанную в институте вакцину, изготовленную из собственных иммунных клеток пациента. Индивидуальная вакцина учит организм видеть опухолевые клетки и бороться с ними.


    По словам врачей, новый метод иммунотерапии дендритными клетками дает возможность пациентам с III и IV стадией онкологического заболевания добиться стойкой многолетней ремиссии — более 5 лет. Речь идет о заболеваниях, плохо поддающихся стандартному лечению: меланома кожи, саркома мягких тканей, рак почки, рак кишечника. При стандартном лечении более 90% таких пациентов погибает из-за активного прогрессирования болезни в течение первого года после постановки фатального диагноза.

    Уже сегодня врачи НИИ онкологии говорят об эффективности нового метода иммунотерапии. Врачам удалось остановить развитие и взять под контроль болезнь у этих пациентов. По словам медиков, хорошие результаты получены у целой группы пациентов, которые начали лечиться в институте 5 лет назад и раньше. Некоторые из них получают вакцину раз в полгода, а некоторые уже перешли только под наблюдение специалистов.

    Такая методика применяется для пациентов НИИ как платно, так и бесплатно. К примеру, бесплатно аутологичными дендритно-клеточными вакцинами лечатся дети в рамках программы оказания высокотехнологичной медицинской помощи, а также взрослые с саркомой - в рамках протокола внутренних клинических исследований института. Раньше, до 2014 года, в рамках ВМП такое лечение бесплатно могли получить взрослые пациенты и с другими онкодиагнозами, но сейчас этот вид лечения не подпадает под ВМП и оплачивается россиянами из собственного кармана. Стоимость одного введения препарата - 35 или 55 тысяч рублей - в зависимости от вида вакцины. В итоге первый цикл введения вакцины (4 введения с промежутком 2-3 недели) может обойтись в 140 или 220 тысяч рублей. По данным специалистов, аналогичный курс введения клеточной вакцины в США стоит 93 тысячи долларов — то есть более 6 млн рублей.

    Активное внедрение вакцинотерапии в клиническую практику началось в институте с 2014 года. За 2014 – 2015 годы пациенты получили около 400 введений препарата (примерно по 200 введений ежегодно). С начала этого года уже сделано 121 введение вакцины на основе дендритных клеток. В научном отделе онкоиммунологии НИИ в Песочном одновременно проходят разные этапы лечения около 30 человек, среди которых как взрослые, так и дети.

    Как рассказывают в НИИ онкологии, клеточная терапия начала развиваться в институте с 1998 года, когда была организована лаборатория онкоиммунологии. Патент на первое детище лаборатории – способ иммунотерапии костно-мозговыми дендритными клетками пациентов с солидными опухолями был зарегистрирован НИИ в 2003 году, спустя 5 лет запатентована аутологичная вакцина на основе костномозговых дендритных клеток в сочетании с фотодинамической терапией, а в 2010 году получено разрешение на применение этой медицинской технологии в клинической практике.

Читайте также: