Органические соединения с хлором

Хлорорганическое соединение, хлоруглерод или хлорированный углеводород, - это органическое вещество, содержащее по крайней мере один ковалентно связанный атом хлора, который влияет на химическое поведение молекулы. Класс хлоралканов (алканы с одним или несколькими атомами водорода, замещенными хлором) дает общие примеры. Широкое структурное разнообразие и различные химические свойства хлорорганических соединений приводят к широкому спектру названий и областей применения. Органохлориды являются очень полезными веществами во многих областях применения, но некоторые из них представляют серьезную экологическую проблему.


Влияние на свойства

Хлорирование изменяет физические свойства углеводородов несколькими способами. Соединения, как правило, более плотные, чем вода, из-за более высокого атомного веса хлора по сравнению с водородом. Алифатические органохлориды являются алкилирующими агентами, потому что хлорид является уходящей группой.

Определение хлорорганических соединений


Многие такие соединения были выделены из природных источников, от бактерий до людей. Хлорированные органические соединения содержатся почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты. Органохлориды, включая диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам.

Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей. Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Широко известны и хлорорганические соединения в нефти (по ГОСТу - Р 52247-2004).

Эпибатидин

Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов. Лягушки получают эпибатидин через пищу, а затем изолируют его на коже. Вероятными источниками пищи являются жуки, муравьи, клещи и мухи.

Алканы

Алканы и арилалканы могут быть хлорированы в условиях свободных радикалов с ультрафиолетовым излучением. Однако степень хлорирования трудно контролировать. Арилхлориды могут быть получены галогенированием Фриделя-Крафтса с использованием хлора и кислотного катализатора Льюиса. Методы определения хлорорганических соединений включают в себя в том числе и применение этого катализатора. Другие методы также упомянуты в статье.

Реакция галоформа с использованием хлора и гидроксида натрия также способна генерировать алкилгалогениды из метилкетонов и родственных соединений. Хлороформ ранее производился таким образом.

Хлор добавляет к множественным связям алкены и алкины, давая ди- или тетрахлорсоединения.

Алкилхлориды

Алкилхлориды являются универсальными строительными блоками в органической химии. Хотя алкилбромиды и йодиды являются более реакционноспособными, алкилхлориды менее дорогие и более доступные. Алкилхлориды легко подвергаются атаке нуклеофилов.

Нагревание алкилгалогенидов с гидроксидом натрия или водой дает спирты. Реакция с алкоксидами или ароксидами дает эфиры в синтезе эфира Уильямсона; реакции с тиолами дают тиоэфиры. Алкилхлориды легко вступают в реакцию с аминами с образованием замещенных аминов. Алкилхлориды замещены более мягкими галогенидами, такими как йодид, в реакции Финкельштейна.

Также возможна реакция с другими псевдогалогенидами, такими как азид, цианид и тиоцианат. В присутствии сильного основания алкилхлориды подвергаются дегидрогалогенированию с образованием алкенов или алкинов.


Алкилхлориды реагируют с магнием с образованием реактивов Гриньяра, превращая электрофильное соединение в нуклеофильное. Реакция Вюрца восстанавливающим образом соединяет два алкилгалогенида с натрием.

Применение

Крупнейшим применением хлорорганической химии является производство винилхлорида. Годовой объем производства в 1985 году составил около 13 миллиардов килограммов, почти все из которых были преобразованы в поливинилхлорид (ПВХ). Определение хлорорганических соединений (по ГОСТу) является процессом, который невозможно совершить без специального стандартизованного оборудования.

Большинство низкомолекулярных хлорированных углеводородов, таких как хлороформ, дихлорметан, дихлорэтан и трихлорэтан, являются полезными растворителями. Эти растворители имеют тенденцию быть относительно неполярными; поэтому они не смешиваются с водой и эффективны при очистке, такой как обезжиривание и химическая чистка. Эта очистка также относится к методам определения хлорорганических соединений (нефть и другие вещества очень богаты этими соединениями).

Наиболее важным является дихлорметан, который в основном используется в качестве растворителя. Хлорметан является предшественником хлорсиланов и силиконов. Исторически значимым, но меньшим по масштабу является хлороформ, в основном предшественник хлордифторметана (CHClF2) и тетрафторэтена, который используется при производстве тефлона.

Двумя основными группами хлорорганических инсектицидов являются вещества типа ДДТ и хлорированные алициклические растворы. Механизм их действия немного отличается от хлорорганических соединений в нефти.

ДДТ-подобные соединения

Хлорированные циклодиены включают альдрин, дильдрин, эндрин, гептахлор, хлордан и эндосульфан. Длительность воздействия от 2 до 8 часов приводит к снижению активности центральной нервной системы (ЦНС), за которой следуют повышенная возбудимость, тремор, а затем приступы. Механизм действия заключается в связывании инсектицидов на участке ГАМК в комплексе ионофоров хлорида гамма-аминомасляной кислоты (ГАМК), который препятствует поступлению хлорида в нерв.

Другие примеры включают дикофол, мирекс, кепон и пентахлорфенол. Они могут быть либо гидрофильными, либо гидрофобными, в зависимости от их молекулярной структуры.

Дифенилы

Полихлорированные дифенилы (ПХД) когда-то были широко используемыми электрическими изоляторами и теплоносителями. Их использование, как правило, было прекращено из-за проблем со здоровьем. ПХБ были заменены полибромированными дифениловыми эфирами (ПБДЭ), которые вызывают аналогичные проблемы с токсичностью и биоаккумуляцией.

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, являются стойкими органическими загрязнителями, которые представляют опасность при их выбросе в окружающую среду, как и некоторые инсектициды (такие как ДДТ).

Например, ДДТ, который широко использовался для борьбы с насекомыми в середине 20-го века, также накапливается в пищевых цепях, как и его метаболиты DDE и DDD, и вызывает проблемы с репродуктивной системой (например, истончение яичной скорлупы) у некоторых видов птиц. Некоторые соединения такого типа, такие как серная горчица, азотная горчица и люизит, даже используются в качестве химического оружия из-за своей токсичности.

Интоксикация хлорорганическими соединениями


Однако наличие хлора в органическом соединении не обеспечивает токсичность. Некоторые органохлориды считаются достаточно безопасными для употребления в пищу и лекарства. Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту и подсластитель сукралоза (Splenda) широко используются в диетических продуктах.

По состоянию на 2004 год по крайней мере 165 органохлоридов были одобрены во всем мире для использования в качестве фармацевтических препаратов, включая природный антибиотик ванкомицин, антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционные препараты. анестетик изофлуран. Знать эти соединения обязательно для определения хлорорганических соединений в нефти (по ГОСТу).

Выводы ученых

В арктических районах особенно высокие уровни встречаются у морских млекопитающих. Эти химические вещества концентрируются у млекопитающих и даже содержатся в грудном молоке человека. У некоторых видов морских млекопитающих, особенно тех, которые производят молоко с высоким содержанием жира, у самцов, как правило, гораздо более высокие уровни, так как самки снижают концентрацию, передавая вещества потомству в результате лактации. Также эти вещества могут находиться в нефти, что важно учитывать во время определения хлорорганических соединений в нефти (по ГОСТу). Обычно это касается пестицидов, хотя может также относиться к любому соединению такого типа.

Хлорорганические пестициды можно классифицировать по их молекулярным структурам. Циклопентадиеновые пестициды представляют собой алифатические циклические структуры, полученные в результате реакций Пентахлорциклопентадиена Дильса-Альдера, и включают хлордан, нонахлор, гептахлор, эпоксид гептахлора, дильдрин, альдрин, эндрин, мирекс и кепон. Другими подклассами хлорорганических пестицидов являются семейство ДДТ и изомеры гексахлорциклогексана. Все эти пестициды имеют низкую растворимость и летучесть и устойчивы к процессам разрушения в окружающей среде. Их токсичность и стойкость в окружающей среде привели к их ограничению или приостановке для большинства видов применения в Соединенных Штатах.

Пестициды

Хлорорганические пестициды очень эффективны для уничтожения вредителей, особенно насекомых. Но многие из этих химических продуктов негативно воспринимаются экологическими активистами и потребителями из-за одного хорошо известного и ныне запрещенного хлорорганического пестицида: дихлордифенилтрихорэтана, более известного как ДДТ.

Хлорорганические пестициды относятся к химическим веществам с углеродом, хлором и водородом. Как пояснила Служба рыбного хозяйства и дикой природы США, хлор-углеродные связи особенно прочны, что не позволяет этим химическим веществам быстро разрушаться или растворяться в воде. Химическое вещество также привлекает жир и накапливается в жировой ткани животных, которые его потребляют.

Долговечность химического состава хлорорганических пестицидов является одной из причин, по которой он так же эффективен, как и инсектицид, и потенциально вреден - он может защищать сельскохозяйственные культуры в течение длительного времени, но также может оставаться в организме животного.

Наряду с ДДТ агентство по охране окружающей среды США запретило использование других хлорорганических пестицидов, таких как альдрин, дильдрин, гептахлор, мирекс, хлордекон и хлордан. В Европе аналогичным образом запрещены многие хлорорганические пестициды, но в обоих этих регионах хлорорганические химические вещества по-прежнему являются активными ингредиентами в ряде продуктов для борьбы с вредителями в домашних условиях, в саду и в окружающей среде, согласно данным EPA. Хлорорганические пестициды также чрезвычайно популярны в развивающихся странах по всему миру для использования в сельском хозяйстве.


Независимо от того, исследуете ли вы сельскохозяйственные угодья, чтобы убедиться, что они все еще заполнены летними хлорорганическими пестицидами, или осматриваете воду на наличие хлорорганических соединений, тестирование - лучший способ узнать, есть ли эти химические вещества рядом с вами. EPA методы 8250A и 8270B могут быть использованы для проверки этих химических веществ. 8250A может тестировать отходы, почву и воду, в то время как 8270B использует газовую хроматографию/масс-спектрометрию (ГХ/МС).

Хотя хлорорганические пестициды наиболее известны тем, что они наносят ущерб способности некоторых птиц откладывать здоровые яйца, известно, что эти химические вещества негативно влияют на людей, которые потребляют или вдыхают пестициды. Случайное вдыхание или употребление загрязненной рыбы или тканей животных является наиболее вероятным способом проглатывания хлорорганических пестицидов. Чтобы подтвердить, что кто-то имеет признаки отравления хлорорганическим соединением, кровь или мочу обычно отправляют в университет или государственное учреждение, которое использует ГХ/МС для проверки химических соединений.

Признаки отравления

Предупреждающие признаки токсичности хлорорганических пестицидов включают судороги, галлюцинации, кашель, кожную сыпь, рвоту, боль в животе, головные боли, спутанность сознания и, возможно, дыхательную недостаточность согласно Мэтью Вонгу, доктору философии, доктору философии, и медицинскому центру Beth Israel Deaconess, Medscape. Хотя в США и Европе существуют запреты на многие из этих пестицидов, их использование в других частях света и хранение в некоторых частях США и Европы создают ситуации, когда отравления хлорорганическими соединениями все еще возможны.

Хлорорганические пестициды включают в себя большое количество стойких химических веществ, которые являются одновременно эффективными и несут значительный риск по всему миру.

Хотя галогенированные органические соединения относительно редки по природе по сравнению с негалогенированными, многие такие соединения были выделены из природных источников, от бактерий до людей. Существуют примеры природных хлорсодержащих соединений, обнаруживаемых почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты.

Органохлориды, в том числе диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам. Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей.

Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов.


Диоксины

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, и некоторые инсектициды, такие как ДДТ, являются стойкими органическими загрязнителями, которые представляют опасность для окружающей среды. Например, чрезмерное использование ДДТ в середине двадцатого века, которое накапливается у животных, привело к серьезному сокращению популяций некоторых птиц. Хлорированные растворители при неправильном обращении с ними и их утилизации создают проблемы с загрязнением подземных вод.

Некоторые органохлориды, такие как фосген, даже использовались в качестве боевых отравляющих веществ. Некоторые из искусственно созданных и токсичных органохлоридов, таких как ДДТ, будут накапливаться в организме с каждым воздействием, что в конечном итоге приведет к смертельному количеству, потому что организм не может их разрушить или избавиться от них. Однако присутствие хлора в органическом соединении никоим образом не обеспечивает токсичность. Многие хлорорганические соединения достаточно безопасны для употребления в пищу и лекарства.

Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту (4-Cl-IAA) и подсластитель сукралоза (Splenda) широко используются в диетических продуктах. По состоянию на 2004 год во всем мире было одобрено, по меньшей мере, 165 хлорорганических соединений для применения в качестве фармацевтических препаратов, включая антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционный анестетик изофлуран.


Открытие Рэйчел Карсон

Хлорорганические соединения (по ГОСТу) входят в список веществ, опасных для человека.

Добываемая нефть представляет собой многофазную многокомпонентную смесь, ее химический состав находится в тесной корреляции с местом разработки. Важным показателем качества товарной нефти является содержание в ней хлорорганических соединений. Наличие хлорорганических соединений (ХОС) является потенциально опасным для предприятий нефтепереработки и может привести к финансовым потерям.

Некоторые из хлорорганических соединений представляют собой мощные растворители, которые наилучшим образом показывают себя в качестве средств для промывки скважин в процессе бурения, что в результате приводит к увеличению объема добываемого сырья, но может приводить к его загрязнению хлорорганикой. Кроме того, причиной наличия в нефти хлорсодержащих компонентов могут быть реагенты, используемые в процессе обработки, перевозки и хранения нефтяного сырья.


Для чего нужны реагенты?

Под реагентами подразумевают особые композиции, которые тем или иным способом влияют на свойства добываемого, перерабатываемого или транспортируемого продукта. Они делятся на несколько групп:

  • моющие;
  • буровые;
  • бактерицидные;
  • поглощающие кислород;
  • гасители пены;
  • эмульгаторы/деэмульгаторы;
  • кислотные составы;
  • ингибиторы гидратообразования;
  • гидрофобизаторы;
  • депрессоры;
  • ингибиторы асфальтосмолопарафиновых, солевых отложений, коррозии;
  • нейтрализаторы сероводорода.

Реагенты различаются по стойкости, безопасности, производительности, стоимости, ограничениям, совместимости с другими компонентами. В связи с ограничением на ХОС сегодня чаще используют реагенты, в которых они не содержатся, чтобы уменьшить степень износа дорогостоящего оборудования. Но в некоторых случаях наличие хлорорганики делает процессы значительно более эффективными.

Фракции нефти, такие как смолисто-парафиновая и смолисто-асфальтеновая, имеют повышенный уровень вязкости. Содержание в них гетероциклических высокомолекулярных композиций иногда достигает 50% массы. ХОС нужны для того, чтобы снизить вязкость и растворить содержащиеся смолы — это помогает повысить нефтеотдачу пластов.

При этом пласты — не единственное место, где образуются вязкие отложения. Они также появляются внутри транспортирующего и добывающего оборудования. С течением времени такие отложения накапливаются, поэтому необходимо промывать:

  • нефтепроводы;
  • резервуары для хранения;
  • буровое оборудование и т.д.

Зачастую промывание делается с помощью хлорорганических растворителей, поскольку они достаточно эффективны. На каждом этапе добычи, перевозки и переработки сырья содержание ХОС должно контролироваться.

Сегодня все методы, которые могут помочь эффективно избавиться от примесей, в том числе и от ХОС, либо находятся на стадии разработки, либо относятся к запатентованным технологиям. Поиск новых способов — одна из важнейших задач в нефтедобывающей и нефтеперерабатывающей отрасли. А контроль качества является составной частью любой новой технологии, связанной с нефтепереработкой.



Добываемое из нефтяных скважин сырье представляет собой многокомпонентную и многофазную систему. Различают пластовую, сырую и товарную нефть. Элементный состав нефти зависит от месторождения. Хлор входит в состав природной нефти в небольших количествах и только в виде неорганических хлоридов. Обзорная статья о хлорорганике в нефти доступна по ссылке.

Откуда берутся органические хлориды в нефти

Хлорорганика (ХОС) включает любые органические соединения, в которых, по крайней мере, один атом водорода замещен на один атом хлора, т.е. в структуре присутствует одна и более ковалентная связь C-Cl. ХОС получают синтетическим путем, применяя их в технологических целях.

Как попал органический хлор в состав нефти, если ХОС имеют искусственное происхождение?

Низкомолекулярные гомологи хлоралканов, хлоралкенов, арилгалогениды - эффективные растворители, которые используют для обезжиривания, растворения парафинов и других плохо растворимых, в том числе и полимерных, соединений. Такие соединения эффективно применяют в составе технологических жидкостей при бурении скважин для их промывки, глушения, увеличения извлекаемых объемов и т.д. Таким образом, причины загрязнения сырого необработанного продукта связаны с применением хлорорганики при добыче нефти.

Реагенты, используемые при транспортировке, переработке и хранении также будут источниками хлоридов в нефти.

Зачем добавляют реагенты

Нефтепромышленные реагенты - это специально разработанные композиции, влияющие на свойства нефти или нефтепродуктов в процессе добычи, транспортировки и переработки.

Выделяют несколько групп реагентов:

эмульгаторы и деэмульгаторы;

ингибиторы асфальтосмолопарафиновых отложений (АСПО);

При выборе реагента следует учитывать такие факторы, как производительность, эффективность, стойкость, безопасность, цена, совместимость и ограничения, в том числе связанные и с содержанием хлорорганических соединений. После запрета на использование хлорорганики предпочтения отдаются реагентам, которые не включают в состав ХОС. Однако, в некоторых случаях, применение органических хлоридов способствует повышению эффективности процессов.

Зачем в нефть добавляют хлор в составе органических соединений

Смолисто-асфальтеновая и смолисто-парафиновая фракции нефти представляют из себя коллоидные растворы, обладающие повышенной вязкостью. Эти фракции состоят из высокомолекулярных гетероциклических соединений, содержание которых в нефти в некоторых случаях может доходить до 25 – 50% по массе. Снижение вязкости и растворение смол необходимо для увеличения нефтеотдачи пластов, для чего используют хлорорганические соединения.

Образование вязких отложений, таких как АСПО, происходит не только в пластах, но и внутри добывающего и транспортирующего оборудования. По мере того как образуются и накапливаются отложения, также возникает необходимость использования хлорорганических растворителей для промывания бурового оборудования, нефтепроводов и резервуаров для хранения и т.д.

Зачем в нефть добавляют хлориды неорганического происхождения

Нефтепромышленные реагенты могут представлять собой источник и других хлорсодержащих примесей в нефти. Так, например, для предотвращения микробиологической коррозии нефтедобывающего оборудования используют бактерициды, которые подавляют рост анаэробных бактерий, таких как сульфовосстанавливающие. В составе таких средств используют органические соли – хлориды четвертичных аминов.

Для решения проблемы солеотложения разработаны различные ингибиторы этого процесса, содержащие гидрохлориды органических аминов, сахаров, хлорид натрия.

Таким образом, становится понятно, откуда берутся неорганические хлориды в нефти после ее отмывки и предварительной очистки.

Причиной попадания хлора в конечные нефтепродукты также является использование различных реагентов. По мере того как образуются продукты распада ХОС, ускоряется процесс коррозии и износ оборудования.

О методах очистки от хлороорганических соединений можно почитать в следующей статье.

  • 11 Июня 2019

Поставщик аналитического и лабораторного оборудования для нефтехимической отрасли. Официальный представитель MITSUBISHI CHEMICAL ANALYTECH CO., LTD. в России и странах СНГ.

Адрес: 119071, г. Москва, 2-й Донской проезд, д. 10, стр. 4


Хлорорганические соединения (ХОС) - галопроизводные полициклических углеводородов и углеводородов алифатического ряда. Ранее широко применялись в качестве пестицидов.

  • История
  • Физико-химические свойства
  • Действие на вредные организмы
  • Резистентность
  • Токсикологические свойства и характеристики
  • В гидросфере
  • В атмосфере
  • В почве
  • В растениях
  • Для человека и теплокровных

Эти вещества обладают высокой химической стойкостью к воздействиям различных факторов внешней среды. ХОС – высокостабильные и сверхстабильные пестициды, для которых наиболее характерно концентрирование в последовательных звеньях пищевых цепей. [4]

Вплоть до 1980-х годов по масштабам производства и применения в сельском хозяйстве первое место среди других пестицидов занимали ДДТ и ГХЦГ (Линдан). Это стало причиной повсеместного загрязнения всех объектов окружающей среды остаточными количествами хлорорганических инсектицидов. Положение наглядно характеризуется тем фактором, что даже в снежном покрове Антарктиды к концу прошлого столетия накопилось более 3000 тонн ДДТ. [4]



Пауль Мюллер, открывший инсектицидные свойства ДДТ.

История

Благодаря простоте получения и высокой эффективности против большинства насекомых, этот препарат в течение короткого времени получил большую популярность и широкое распространение по всему миру. Во время Великой Отечественной войны благодаря применению ДДТ были остановлены многие эпидемии. Более 1 млрд человек благодаря этому препарату были избавлены от малярии. История медицины не знала подобных успехов. [3]

Одновременно группа хлорсодержащих соединений, к которым принадлежал ДДТ, активно исследовалась. В 1942 году она была пополнена эффективным в уничтожении вредителей препаратом – гексахлорциклогексаном (ГХЦГ) и его гамма-изомером – ланданом (ГХЦГ) впервые был синтезирован Фарадеем в 1825 году). За 40-летний период, начиная с 1947 года, когда активно заработали заводы по производству хлорорганических препаратов, их было выпущено 3 628 720 т с содержанием хлора 50-73%. [8]

Однако вскоре выяснилось, что ДДТ и другие хлорорганические препараты имеют высокую персистентность, способны преодолевать длинные пищевые цепочки и могут сохраняться в природных объектах в течение многих лет, что послужило поводом для резкого сокращения использования хлорорганических соединений по всему миру.

В 1970-х и в начале 1980-х годов после признания опасности ДДТ для многих живых организмов в некоторых промышленных странах было введено ограничение или полное запрещение его использования (в 1986 г. Японией и США было выпущено примерно на 20% меньше хлорорганических пестицидов, чем в 1980 г). Но в целом по миру потребление линдана и ДДТ заметно не уменьшилось из-за роста их использования в странах Азии, Африки и Латинской Америки. Некоторые государства были вынуждены постоянно применять ДДТ для борьбы с возбудителями малярии и других опасных болезней. [4]

В нашей стране в 1970 году было принято решение изъять высокотоксичные инсектициды из ассортимента пестицидов, которые применяются на фуражных и продовольственных культурах, однако в сельском хозяйстве их продолжали активно применять вплоть до 1975 года и позднее в борьбе с переносчиками инфекционных заболеваний. [9]

Значительно позже, в 1998 г., по предложению ООН в рамках программы по охране окружающей среды была принята конвенция, которая ограничила торговлю опасными веществами и пестицидами типа ДДТ, органофосфатов и ртутных соединений. Многочисленными исследованиями было показано, что стойкие хлорорганические соединения обнаруживаются практически во всех организмах, обитающих в воде и на суше. 95 стран приняли участие в новом международном договоре. В это же время, в перечень токсикантов, обязательных для контроля, были включены дихлордифенилтрихлорэтан (ДДТ) и гексахлорциклогексан (ГХЦГ). [9]

Хлорорганические , хлорорганические соединения, хлоруглеродный или хлорированный углеводород представляет собой органическое соединение , содержащее по меньшей мере , один ковалентно связанный атом хлора , который оказывает влияние на химическом поведении молекулы . Хлоралкане класс ( алканы с одним или более водородов замещены хлором) обеспечивает общие примеры. Широкое структурное разнообразие и расходящиеся химические свойства хлорорганических соединений приводят к широкому диапазону имен и приложений. Хлорорганические соединения являются очень полезными соединениями во многих приложениях, но некоторые из них глубокой заботы об окружающей среде.

содержание

  • 1 Физические и химические свойства
  • 2 Природные появление
  • 3 Получение
    • 3.1 От хлора
    • 3.2 Взаимодействие с хлористым водородом
    • 3.3 Другие хлорирующие агенты
  • 4 Реакции
  • 5 Приложения
    • 5.1 Винилхлорид
    • 5.2 хлорметанов
    • 5.3 Пестициды
    • 5.4 Изоляторы
  • 6 Токсичность
  • 7 Смотрите также
  • 8 Ссылки
  • 9 Внешние ссылки

Физические и химические свойства

Хлорирование изменяет физические свойства углеводородов несколько способов. Соединения , как правило , более плотные , чем вода из - за более высокий атомный весом хлора по сравнению с водородом. Алифатические хлорорганических соединений являются алкилирующие агенты , потому что хлорид представляет собой уходящую группу .

Естественное явление

Многие хлорорганические соединения были выделены из природных источников , начиная от бактерий до человека. Хлорированные органические соединения находятся в практически в каждом классе биомолекул в том числе алкалоидов , терпенов , аминокислот , флавоноидов , стероидов и жирных кислот . Хлорорганические соединения, в том числе диоксинов , производится в высокотемпературной среде лесных пожаров, и диоксины были найдены в консервированном пепле молнии зажигания пожаров , которые предшествуют синтетические диоксины. Кроме того, различные простые хлорированных углеводородов , в том числе дихлорметан, хлороформ и четыреххлористый углерод , были выделены из морских водорослей. Большинство из хлорметана в окружающей среде образуется естественным путем биологического разложения, лесные пожары и вулканы.

Естественный хлорорганический эпибатидин , алкалоид , выделенный из древесных лягушек, обладает мощными анальгезирующими эффектами и стимулировал исследования в области новых обезболивающих препаратов. Однако, из - за его неприемлемым терапевтический индекс, он больше не исследуется для потенциальных терапевтических применений. Лягушки получить Эпибатидин через их рацион , а затем секвестр его на своей коже. Вероятные пищевые источники являются жуки, муравьи, клещи, мухи и.

подготовка

Алканы и арильные алканы могут быть хлорируют при свободнорадикальных условиях, с УФ - светом. Однако степень хлорирования трудно контролировать. Хлориды Арильные могут быть получены галогенированием Фриделя-Крафтса , с использованием хлора и кислоты Льюиса катализатора.

Реакцию haloform , с использованием хлора и гидроксида натрия , также способен генерировать алкилгалогениды из метилкетонов и родственных соединений. Хлороформ был ранее полученный таким.

Хлор добавляет кратных связей на алкенов и алкинов, а также, что дает ди- или тетра-хлор-соединения.

Алкены вступают в реакцию с хлористым водородом (HCl) с получением алкилхлоридов. Например, промышленное производство хлорэтана протекает по реакции этилена с HCl:

В оксихлорировании , хлористый водород вместо более дорогого хлора для тех же целей:

Вторичные и третичные спирты реагируют с хлористым водородом с получением соответствующих хлоридов. В лаборатории, соответствующая реакция с участием хлорида цинка в концентрированной соляной кислоте :

[<\ce >][\Delta ]<\overset >+H2O>>>"> р - ОЙ + HCl → Δ ZnCl 2 р - Cl алкил галоидное соединение + ЧАС 2 О <\ Displaystyle <\ се <<Р-ОН>+ HCl -> [<\ се >] [\ Delta] <\ вытесненным <алкил \ галогенид>> + H 2 O>>>
[<\ се >] [\ Delta] <\ вытесненным <алкил \ галогенид>> + H 2 O>>>">

Названный реагент Лукаса , эта смесь сразу используется в качественном анализе органических классификации спиртов.

Алкилхлориды наиболее легко получены путем обработки спиртов с тионилхлоридом (SOCl 2 ) или пентахлорид фосфора (ПКЛО 5 ), но также часто с сульфурилхлоридом (SO 2 Cl 2 ) и трихлоридом фосфора (PCl 3 ):

ROH + SOCl 2 → RCL + SO 2 + HCl 3 ROH + PCl 3 → 3 RCl + Н 3 РО 3 ROH + PCl 5 → RCl + POCl 3 + HCl

В лаборатории, тионилхлорид особенно удобно, так как побочные продукты являются газообразными. В качестве альтернативы, реакционный Аппель могут быть использованы:


Реакции

Алкильные хлориды являются универсальными строительными блоками в органической химии. В то время как алкильные бромиды и йодиды более активны, алкилхлориды имеют тенденцию быть менее дорогими и более доступными. Алкилхлориды легко подвергаются атаке нуклеофилов.

Отопление алкилгалогениды с гидроксидом натрия или водой дает спирты. Реакция с алкоксидами или aroxides Дайте эфиры , в синтезе эфира Williamson ; Реакция с тиолами дают тиоэфиры . Алкилхлориды легко вступают в реакцию с аминами , чтобы дать замещенные амин . Алкилхлоридов замещены более мягкими галогениды , такие как йодид в реакции Финкельштейна . Взаимодействие с другими псевдогалогенидами , такими как азид , цианид и тиоцианат также возможно. В присутствии сильного основания, алкилхлориды подвергаются дегидрогалогенировании с получением алкенов или алкинов .

Алкилхлоридов реагируют с магнием с получением Гриньяра реагентов , превращая в электрофильное соединение в нуклеофильное соединение. Реакции Вюрца восстановительному пара два алкилгалогенидов в пару с натрием .

Приложения

Наибольшее применение химии хлорорганических является производство винилхлорида . Годовой объем производства в 1985 году составил около 13 миллиардов килограммов, почти все из которых были преобразованы в поливинилхлорид (ПВХ).

Большинство низкомолекулярные хлорированные углеводороды , такие как молекулярные хлороформ , дихлорметан , дихлорэтен , и трихлорэтан являются полезными растворителями. Эти растворители имеют тенденцию быть относительно неполярными ; поэтому они не смешиваются с водой и эффективные в моющих применениях , такие как обезжиривание и сухая чистка . Несколько миллиардов килограммов хлорированных метанов ежегодно производится, в основном , путем хлорирования метана:

Наиболее важным является дихлорметан, который в основном используется в качестве растворителя. Хлорметан является предшественником хлорсиланов и силиконов . Исторически сложилось так существенно, но меньшие по масштабам является хлороформ, главным предшественником хлордифторметана (CHClF 2 ) и tetrafluoroethene , которая используется при изготовлении тефлона.

Две основные группы хлорорганических инсектицидов являются ддт - типа соединения и хлорированные alicyclics . Их механизм действия отличается незначительно.

Полихлорированные бифенилы (ПХБ) были когда - то обычно используются электрические изоляторы и теплоносителей. Их использование в целом было прекращено из - за проблем со здоровьем. ПХБ были заменены полибромдифениловыми эфиров (ПБДЭ), которые приносят подобные токсичности и биоаккумуляции проблемы.

токсичность

Некоторые виды хлорорганических соединений имеют значительную токсичность для растений и животных, включая человека. Диоксины, полученные , когда органическое вещество сгорают в присутствии хлора, являются стойкими органическими загрязнителями , которые представляют опасность , когда они попадают в окружающую среду, а некоторые инсектициды (такие как ДДТ ). Так , например, ДДТ, который широко используется для борьбы с насекомыми в середине 20-го века, а также накапливается в пищевых цепочках, как и его метаболиты DDE и DDD , а также вызывает репродуктивные проблемы (например, истончение яичной скорлупы) в некоторых видов птиц. DDT также создает дополнительные проблемы для окружающей среды , как это extreamly мобильного, следы даже были найдено в Антарктиде dispite химического вещества никогда не использованное там. Некоторые хлорорганические соединения, такие как горчица серы , азот горчица и люизит , даже используются в качестве химического оружия из - за их токсичность.

Тем не менее, присутствие хлора в органическом соединении не обеспечить токсичность. Некоторые хлорорганические соединения считаются достаточно безопасными для потребления в продуктах питания и лекарственных средствах. Так , например, горох и кормовые бобы содержат натуральный растительный гормон хлорированного 4-хлориндол-3-уксусной кислоты (4-Cl-IAA); и подсластитель сукралоза (Splenda) широко используется в диетических продуктах. В 2004 году , по крайней мере , 165 хлорорганических соединений были одобрены во всем мире для использования в качестве фармацевтических препаратов, в том числе природного антибиотика ванкомицина , антигистаминным лоратадин (Кларитин), антидепрессант сертралин (Zoloft), анти-эпилептической ламотриджин (Lamictal) и ингаляции анестетик изофлуран .

Рейчел Карсон принесла вопрос о токсичности пестицида ДДТ для информирования общественности с ее 1962 книги Безмолвная весна . В то время как многие страны прекращено использование некоторых видов хлорорганических соединений , таких как запрет США на ДДТ, стойких ДДТ, ПХБ и других хлорорганических остатков продолжают быть найдены в организме человека и млекопитающих по всей планете много лет после того, как производство и использование было ограничено , В арктических районах, в частности , высокие уровни обнаружены в морских млекопитающих . Эти химические вещества концентрируются у млекопитающих, и даже нашли в грудном молоке. У некоторых видов морских млекопитающих, в частности , те , которые производят молоко с высоким содержанием жира, самцы обычно имеют значительно более высокие уровни, а самки снизить их концентрацию путем передачи их потомство через лактацию.

Читайте также: