Взаимодействие оксида железа с хлором

Реакции, взаимодействие железа. Уравнения реакции железа с веществами.











Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие железа с неметаллами. Уравнения реакции:

1. Реакция взаимодействия железа и серы :

Fe + S → FeS (t = 600-950 °C),

Fe + 2S → FeS2 (t серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).

2. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

Реакция взаимодействия железа и красного фосфора происходит с образованием фосфида железа . Также образуются Fe2P, FeP, FeP2.

3. Реакция взаимодействия железа и селена :

Fe + Se → FeSe (t = 600-950 °C).

Реакция взаимодействия железа и селена происходит с образованием селенида железа.

4. Реакция взаимодействия железа и кремния :

2Si + Fe → FeSi2 (t o ).

Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.

5. Реакция взаимодействия железа, кремния и кислорода:

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с образованием ортосиликата железа, во втором – метасиликата железа.

6. Реакция взаимодействия железа и кислорода:

2Fe + O2 → 2FeO (t o ),

Реакция взаимодействия железа и кислорода происходит в первом случае – с образованием оксида железа (II, III), во втором – оксида железа (II), в третьем – оксида железа (III). Первая и третья реакции представляют собой сгорание железа на воздухе . Вторая реакция происходит при продувании воздуха через расплавленный чугун.

7. Реакция взаимодействия железа и углерода :

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

8. Реакция взаимодействия железа и фтора :

Реакция взаимодействия железа и фтора происходит с образованием фторида железа.

9. Реакция взаимодействия железа и хлора:

Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.

10. Реакция взаимодействия железа и брома:

Реакция взаимодействия железа и брома происходит с образованием бромида железа.

11. Реакция взаимодействия железа и йода :

Реакция взаимодействия железа и йода происходит с образованием йодида железа.

12. Реакция взаимодействия железа и бора:

Реакция взаимодействия железа и бора происходит с образованием борида железа.

Реакции, взаимодействие железа с оксидами. Уравнения реакции:

1. Реакция взаимодействия железа и воды:

2. Реакция взаимодействия железа, воды и кислорода:

Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.

3. Реакция взаимодействия железа, воды и пероксида калия:

Реакция взаимодействия железа, воды и пероксида калия происходит с образованием феррата железа и гидроксида калия . Реакция протекает медленно в концентрированном растворе гидроксида калия.

4. Реакция взаимодействия железа и оксида железа (II, III):

Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).

5. Реакция взаимодействия железа и оксида железа (III):

Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).

6. Реакция взаимодействия железа и оксида углерода (II):

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C, р = 1·10 7 -2·10 7 Па).

Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.

7. Реакция взаимодействия железа и оксида серы:

Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа. Реакция медленно протекает при комнатной температуре.

Реакции, взаимодействие железа с солями. Уравнения реакции:

1. Реакция взаимодействия железа и нитрата меди:

Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.

2. Реакция взаимодействия железа и нитрата серебра:

Реакция взаимодействия нитрата серебра и железа происходит с образованием нитрата железа и серебра .

3. Реакция взаимодействия железа и сульфата меди:

Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.

4. Реакция взаимодействия железа и хлорида меди:

Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.

5. Реакция взаимодействия железа и хлорида железа (III):

Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.

Реакции, взаимодействие железа с кислотами. Уравнения реакции:

1. Реакция взаимодействия железа и азотной кислоты:

Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции используется концентрированная азотная кислота.

2. Реакция взаимодействия железа и ортофосфорной кислоты:

Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции используется разбавленный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие железа с основаниями. Уравнения реакции:

1. Реакция взаимодействия железа, гидроксида натрия и воды:

Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.

2. Реакция электролиза железа, водного раствора гидроксида калия:

Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.

Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).

Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.

2. Реакция взаимодействия железа и фтороводорода:

Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции используется разбавленный раствор фтороводорода.

1. Железо: положение этого химического элемента в периодической системе. Химические свойства железа: взаимодействие с серой, хлороводородной кислотой, растворами солей. Оксиды и гидроксиды железа

Положение в периодической системе: железо находится в 4 периоде, побочной (Б) подгруппе VIII группы. Атомный номер железа 26.

Заряд ядра атома равен + 26, число электронов 26. Четыре электронных уровня, на внешнем уровне 2 электрона.

Схема расположения электронов по уровням:
26Fe ) ) ) )
2 8 14 2

Чистое железо — мягкий металл. Железо способно намагничиваться в магнитном поле.

Железо в химических реакциях окисляется до степени окисления +2 или +3. Со слабыми окислителями, такими как сера, разбавленные кислоты, растворы солей, — железо окисляется до +2 (валентность II).

Если нагреть железные опилки с порошком серы, начинается экзотермическая реакция (с выделением теплоты), которая продолжается без дальнейшего нагревания. Образуется сульфид железа (II):

Железо находится в электрохимическом ряду напряжений левее водорода, поэтому вытесняет водород из кислот. При взаимодействии с соляной (хлороводородной) кислотой образуется хлорид железа (II):

Железо вытесняет менее активные металлы (которые расположены правее в ряду напряжений) из растворов их солей. Если поместить железные опилки (или кнопку) в раствор хлорида меди (II), железо покрывается красным слоем меди, а голубой раствор приобретает зеленоватый цвет:

Оксиды и гидроксиды железа нерастворимы в воде. Получены оксиды и гидроксиды с различной степенью окисления железа:

  1. Оксид железа (II) FeO, гидроксид железа (II) Fe(OH)2. Проявляют осно́вные свойства. Оксид железа (II) черного цвета. Гидроксид железа (II) выпадает в виде осадка зеленоватого цвета при добавлении щелочей в раствор соли железа (II).
  2. Железо горит в кислороде:
    3Fe + 2O2 = Fe3O4
    с образованием железной окалины (представляет из себя смешанный оксид Fe +2 O•Fe2 +3 O3). Темно-серого цвета.
  3. Гидратированный оксид железа (III) Fe2O3• nH2O является основной составной частью ржавчины. Бурого цвета. Проявляет слабые амфотерные свойства. Гидроксид железа (III) получают воздействием щелочей на соли железа трехвалентного.

Сильные окислители, например, хлор при нагревании, окисляют железо до степени окисления +3:

Железо пассивируется концентрированной серной кислотой, поэтому ее перевозят в стальных цистернах.

Железо широко применяется в промышленности в виде сплавов: чугуна и стали. Сплавы отличаются более высокой твердостью. С помощью специальных легирующих добавок получают сталь, устойчивую к коррозии, высоким температурам и пр.

В организме человека элемент железо входит в состав гемоглобина крови, осуществляющего транспорт кислорода из легких в ткани.

  1. Разделяем каждый раствор пополам, т. е. получаем два набора по три пробирки.
  2. Чтобы распознать среди трех растворов кислоту, капаем в первые три пробирки индикатор лакмус синий или метилоранж (метиловый оранжевый). В пробирке с кислотой индикатор покраснеет.
  3. Чтобы распознать щелочь, капаем в оставшиеся три пробирки индикатор фенолфталеин (ф-ф). В пробирке со щелочью он станет малиновым.

Можно воспользоваться универсальным индикатором: капаем исследуемый раствор на полоску индикаторной бумаги и сравниваем со шкалой, делаем вывод о наличии кислоты или щелочи.


Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:


Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3) Железо реагирует с неметаллами при нагревании:

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S2 -1 ) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н2SO4, при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl2 + H2­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3 )

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

(на холоде концентрированные азотная и серная кислоты пассивируют железо).


Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо — сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:

б) сжигание кокса при горячем дутье:

в) восстановление оксидной руды угарным газом СО последовательно:

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

)→(C(кокс) 900—1200°С)(ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО2, SО2), либо связываются в легко отделяемый шлак — смесь Са3(РO4)2 и СаSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь — как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) FеО. Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe2 III ) + Fе (560—700 °С , 900—1000°С)

FеО + 4NаОН =2Н2O + Nа4FеO3(красн.) триоксоферрат(II) (400—500 °С)

FеО + Н22O + Fе (особо чистое) (350°С)

FеО + С(кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO2 (900°С)

Получение в лаборатории: термическое разложение соединений железа (II) без доступа воздуха:

FеСОз = FеО + СO2 (490-550 °С)

Оксид дижелеза (III) – железа(II) (Fe II Fe2 III )O4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+ )2( O 2- )4. Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe3O4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe2 III )O4 = 6FеО + O2 (выше 1538 °С)

(Fe II Fe2 III )O4 + 4Н2 = 4Н2O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe2 III )O4 + Fе ⇌4FеО (900—1000 °С , 560—700 °С)

Получение: сгорание железа (см.) на воздухе.

В природе — оксидная руда железа магнетит.

Оксид железа(III) Fе2О3. Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+ )2(O 2- )3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе2O32О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

2O3 + 2NaОН (конц.) →Н2O+ 2NаFеO2 (красн.) диоксоферрат(III)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

В природе — оксидные руды железа гематит2O3 и лимонит2O32O

Гидроксид железа (II) Fе(ОН)2. Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Получение: осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Метагидроксид железа FеО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе2O32O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН)2. Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН)3 не известно (не получено).

Уравнения важнейших реакций:

2O3 . nН2O→(200-250 °С, —H2O) FеО(ОН)→( 560-700° С на воздухе , -H2O) →Fе2О3

FeO(OH)→Fe2O3 . nH2O -коллоид (NаОН (конц.))

FеО(ОН)→Nа3[Fе(ОН)6] белый , Nа5[Fе(OН)8 желтоватый (75 °С, NаОН( т))

2FеО(ОН) + ЗН2 = 4Н2O+ 2Fе (особо чистое, 500—600 °С)

Получение: осаждение из раствора солей железа(Ш) гидрата Fе2О32O и его частичное обезвоживание (см. выше).

В природе — оксидная руда железа лимонит2O32О и минерал гётит FеО(ОН).

Феррат калия К2FеО4. Оксосоль. Красно-фиолетовый, разлагается при сильном нагревании. Хорошо растворим в концентрированном растворе КОН, реагирует с кипящей водой, неустойчив в кислотной среде. Сильный окислитель.

Качественная реакция — образование красного осадка феррата бария. Применяется в синтезе ферритов — промышленно важных двойных оксидов железа (III) и других металлов.

Уравнения важнейших реакций:

FеО4 2- + Ва 2+ = ВаFеO4 (красн.)↓ (в конц. КОН)

Получение: образуется при окислении соединений железа, например метагидроксида FеО(ОН), бромной водой, а также при действии сильных окислителей (при спекании) на железо

Fе + 2КОН + 2КNO3 = К2FеO4 + 3КNO2+ H2O (420 °С)

и электролизе в растворе:

Fе + 2КОН (конц.) + 2Н2O→ЗН2↑ + К2FеO4 ( электролиз)

(феррат калия образуется на аноде).

Качественные реакции на ионы Fе 2+ и Fе 3+

Обнаружение ионов Fе 2+ и Fе 3+ в водном растворе проводят с помощью реактивов К3[Fе(СN)6] и К4[Fе(СN)6] соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III [Fе II (СN)6]. В лаборатории этот осадок называют берлинская лазурь, или турнбуллева синь:

Fе 2+ + К + + [Fе(СN)6] 3- = КFе III [Fе II (СN) 6]↓

Fе 3+ + К + + [Fе(СN)6] 4- = КFе III [Fе II (СN) 6]↓

Химические названия исходных реактивов и продукта реакций:

К3Fе III [Fе(СN) 6]- гексацианоферрат (III) калия

К4Fе III [Fе (СN) 6]- гексацианоферрат (II) калия

КFе III [Fе II (СN) 6]- гексацианоферрат (II) железа (Ш) калия

Fе 3+ + 6NСS — = [Fе(NСS)6] 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.



Твердый металл голубовато-белого цвета. Этимология слова "хром" берет начало от греч. χρῶμα — цвет, что связано с большим разнообразием цветов соединений хрома. Массовая доля этого элемента в земной коре составляет 0.02% по массе.


Для хрома характерны степени окисления +2, +3 и +6. У соединений, где хром принимает степень окисления +2, свойства основные, +3 - амфотерные, +6 - кислотные.


В природе хром встречается в виде следующих соединений.

  • Fe(CrO2)2 - хромистый железняк, хромит
  • (Mg, Fe)Cr2O4 - магнохромит
  • (Fe, Mg)(Cr, Al)2O4 - алюмохромит


В промышленности хром получают прокаливанием хромистого железняка с углеродом. Также применяют алюминотермию для вытеснения хрома из его оксида.

    Реакции с неметаллами

Уже на воздухе вступает в реакцию с кислородом: на поверхности металла образуется пленка из оксида хрома III - Cr2O3 - происходит пассивирование. Реагирует с неметаллами при нагревании.


Протекает в раскаленном состоянии.

Реакции с кислотами


С холодными концентрированными серной и азотной кислотой реакция не идет. Она начинается только при нагревании.

Реакции с солями менее активных металлов

Хром способен вытеснить из солей металлы, стоящие в ряду напряжений правее него.

Соединения хрома II

Соединение хрома II носят основный характер. Оксид хрома II окисляется кислородом воздуха до более устойчивой формы - оксида хрома III, реагирует с кислотами, кислотными оксидами.


Гидроксид хрома II, как нерастворимый гидроксид, легко разлагается при нагревании на соответствующий оксид и воду, реагирует с кислотами, кислотными оксидами.


Соединения хрома III

Это наиболее устойчивые соединения, которые носят амфотерный характер. К ним относятся оксид хрома III гидроксид хрома III.


Оксид хрома III реагирует как с растворами щелочей, образуя комплексные соли, так и с кислотами.

Cr2O3 + NaOH + H2O = Na3[Cr(OH)6] (нет прокаливания - в водном растворе, гексагидроксохромат натрия)

Cr2O3 + HCl = CrCl3 + H2O (сохраняем степень окисления)


Оксид хрома III реагирует с более активными металлами (например, при алюминотермии).

При окислении соединение хрома III получают соединения хрома VI (в щелочной среде).

Соединения хрома VI

В этой степени окисления хром проявляет кислотные свойства. К ним относится оксид хрома VI - CrO3, и две кислоты, находящиеся в растворе в состоянии равновесия: хромовая - H2CrO4 и дихромовая кислоты - H2Cr2O7.

Принципиально важно помнить окраску хроматов и дихроматов (часто она бывает дана в заданиях в качестве подсказки). Хроматы окрашивают раствор в желтый цвет, а дихроматы - в оранжевый цвет.


Хроматы переходят в дихроматы с увеличением кислотности среды (часто в реакциях с кислотами). Цвет раствора меняется с желтого на оранжевый.

Если же оранжевому раствору дихромата прилить щелочь, то он сменит свой цвет на желтый - образуется хромат.

Разложение дихромата аммония выглядит очень эффектно и носит название "вулканчик" :)


В степени окисления +6 соединения хрома проявляют выраженные окислительные свойства.

Является одним из самых распространенных элементов в земной коре (после алюминия), составляет 4,65% ее массы.


Для железа характерны две основные степени окисления +2, +3, +6.


В природе железо встречается в виде следующих соединений:

  • Fe2O3 - красный железняк, гематит
  • Fe3O4 - магнитный железняк, магнетит
  • Fe2O3*H2O - бурый железняк, лимонит
  • FeS2 - пирит, серый или железный колчедан
  • FeCO3 - сидерит


Получают железо восстановлением из его оксида - руды. Восстанавливают с помощью угарного газа, водорода.

Основными сплавами железа являются чугун и сталь. В стали содержание углерода менее 2%, меньше содержится P, Mn, Si, S. Чугун отличается бо́льшим содержанием углерода (2-6%), содержит больше P, Mn, Si, S.


    Реакции с неметаллами

Fe + S = FeS (t > 700°C)

Fe + S = FeS2 (t 2+ в растворе является реакция с красной кровяной солью - K3[Fe(CN)6] - гексацианоферратом III калия. В результате реакции образуется берлинская лазурь (прусский синий).

Качественной реакцией на ионы Fe 2+ также является взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок зеленого цвета.

Соединения железа III проявляют амфотерные свойства. Оксид и гидроксид железа III реагирует и с кислотами, и с щелочами.

Fe(OH)3 + KOH = K3[Fe(OH)6] (гексагидроксоферрат калия)

При сплавлении комплексные соли не образуются из-за испарения воды.

Гидроксид железа III - ржавчина, образуется на воздухе в результате взаимодействия железа с водой в присутствии кислорода. При нагревании легко распадается на воду и соответствующий оксид.


Качественной реакцией на ионы Fe 3+ является взаимодействие с желтой кровяной солью K4[Fe(CN)6]. В результате реакции образуется берлинская лазурь (прусский синий).

Реакция хлорида железа III с роданидом калия также является качественной, в результате нее образуется характерный раствор ярко красного цвета.


И еще одна качественная реакция на ионы Fe 3+ - взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок бурого цвета.

Соединения железа VI - ферраты - соли несуществующей в свободном виде железной кислоты. Обладают выраженными окислительными свойствами.

Ферраты можно получить в ходе электролизом щелочи на железном аноде, а также действием хлора на взвесь Fe(OH)3 в щелочи.


Один из первых металлов, освоенных человеком вследствие низкой температуры плавления и доступности получения руды.


Основные степени окисления меди +1, +2.


Медь встречается в самородном виде и в виде соединений, наиболее известные из которых:

  • CuFeS2 - медный колчедан, халькопирит
  • Cu2S - халькозин
  • Cu2CO3(OH)2 - малахит


Пирометаллургический метод получения основан на получении меди путем обжига халькопирита, который идет в несколько этапов.

Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте и дальнейшем вытеснении меди более активными металлами, например - железом.


Медь, как малоактивный металл, выделяется при электролизе солей в водном растворе на катоде.

CuSO4 + H2O = Cu + O2 + H2SO4 (медь - на катоде, кислород - на аноде)

    Реакции с неметаллами

Во влажном воздухе окисляется с образованием основного карбоната меди.

При нагревании реагирует с кислородом, селеном, серой, при комнатной температуре с: хлором, бромом и йодом.

4Cu + O2 = (t) 2Cu2O (при недостатке кислорода)

2Cu + O2 = (t) 2CuO (в избытке кислорода)


Реакции с кислотами

Медь способна реагировать с концентрированными серной и азотной кислотами. С разбавленной серной не реагирует, с разбавленной азотной - реакция идет.


Реагирует с царской водкой - смесью соляной и азотной кислот в соотношении 1 объем HNO3 к 3 объемам HCl.

С оксидами неметаллов

Медь способна восстанавливать неметаллы из их оксидов.

Cu + SO2 = (t) CuO + S

Cu + NO = (t) CuO + N2

В степени окисления +1 медь проявляет основные свойства. Соединения меди I можно получить путем восстановления соединений меди II.

Оксид меди I можно восстановить до меди различными восстановителями: угарным газом, алюминием (алюминотермией), водородом.

Оксид меди I окисляется кислородом до оксида меди II.

Оксид меди I вступает в реакции с кислотами.

Гидроксид меди CuOH неустойчив и быстро разлагается на соответствующий оксид и воду.

Степень окисления +2 является наиболее стабильной для меди. В этой степени окисления у меди есть оксид CuO и гидроксид Cu(OH)2. Данные соединения проявляют преимущественно основные свойства.

Оксид меди II получают в реакциях термического разложения гидроксида меди II, реакцией избытка кислорода с медью при нагревании.

    Реакции с кислотами

CuO + CO = Cu + CO2

Гидроксид меди II - Cu(OH)2 - получают в реакциях обмена между растворимыми солями меди и щелочью.


При нагревании гидроксид меди II, как нерастворимое основание, легко разлагается на соответствующий оксид и воду.

Реакции с кислотами

Реакции с щелочами

Как сказано выше, гидроксид меди II носит преимущественно основный характер, однако способен проявлять и амфотерные свойства. В растворе концентрированной щелочи он растворяется, образуя гидроксокомлпекс.

Реакции с кислотными оксидами

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: