Степень окисления hclo4 с хлором

Задание 4. В соединении, формула которого HClO3, степень окисления хлора равна:

1) +5; 2) +3; 3) +1; 4) +7

Степень окисления определяют, как заряд атома элемента в соединении, который возник бы на данном атоме, если предположить, что все связи в соединении ионные.

Любая молекула электронейтральна, поэтому сумма всех степеней окисления атомов, входящих в состав молекулы, равна нулю.

Найдем степень окисления хлора в соединении HClO3. Степень окисления кислорода -2, а степень окисления водорода +1.

Степень окисления хлора в молекуле HClO3 равна +5.

  • Все задания варианта
  • Наша группа Вконтакте
  • Наш магазин
  • Наш канал
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • Вариант 1
  • Вариант 1. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 2
  • Вариант 2. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 3
  • Вариант 3. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 4
  • Вариант 4. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 5
  • Вариант 5. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 6
  • Вариант 6. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 7
  • Вариант 7. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 8
  • Вариант 8. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 9
  • Вариант 9. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 10
  • Вариант 10. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 11
  • Вариант 11. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 12
  • Вариант 12. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 13
  • Вариант 13. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 14
  • Вариант 14. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 15
  • Вариант 15. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 16
  • Вариант 16. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 17
  • Вариант 17. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 18
  • Вариант 18. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 19
  • Вариант 19. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 20
  • Вариант 20. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 21
  • Вариант 21. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 22
  • Вариант 22. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 23
  • Вариант 23. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 24
  • Вариант 24. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 25
  • Вариант 25. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 26
  • Вариант 26. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 27
  • Вариант 27. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 28
  • Вариант 28. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 29
  • Вариант 29. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • Вариант 30
  • Вариант 30. Задания ОГЭ 2017. Химия. А.С. Корощенко. 30 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш магазин
  • Наш канал


Задача 823.
Как изменяются в ряду HOCl — HClO 2 — HClO3 — HClO 4: а) устойчивость; б) окислительные свойства; в) кислотные свойства?
Решение:
а) С увеличением степени окисления хлора устойчивость его кислородных кислот растёт в ряду HOCl — HClO 2 — HClO3 — HClO 4 . Объясняется это тем, что при
возрастании степени окисления хлора увеличивается заряд ионов , что усилит его притяжение к иону О 2- , связь Cl—O будет усиливаться.

б) С увеличением степени окисления хлора окислительные свойства кислородных кислот в ряду HOCl — HClO 2 — HClO3 — HClO 4 будут усиливаться. Объясняется это тем, что при увеличении степени окисления атома хлора будет уменьшаться способность его отдавать электроны. Так в HCO атом хлора находится в своей степени окисления +1, а в HClO2 – в степени окисления +3, поэтому ион хлора Cl + может отдать шесть электронов, а ион Сl 3+ - четыре электрона; присоединить ион Cl + может один или два электрона, а ион Сl 3+ - три или четыре. Таким образом, окислительная способность ионов уменьшается с увеличением степени окисления атомов хлора.

в) С увеличением степени окисления хлора сила его кислородсодержащих кислот возрастают в ряду HOCl — HClO 2 — HClO3 — HClO 4 . Из всех гидроксидов хлора самая слабая кислота это HOCl. При возрастании степени окисления хлора увеличивается заряд иона , что усилит его притяжение к иону О 2- и, тем самым, затруднит диссоциацию гидроксида по типу основания. Вместе с тем усилится взаимное отталкивание одноимённо заряжённых ионов и Н + , что облегчит диссоциацию по кислотному типу. Таким образом, с увеличением степени окисления хлора усиливаются кислотные свойства и ослабевают основные свойства его гидроксидов.

Задача 824.
Как изменяются кислотные и окислительно-восстановительные свойства в ряду НОСl — НОВг — НОI?
Решение:
Увеличение радиуса иона Г n+ при неизменном его заряде приведёт к возрастанию расстояний между центром этого иона и центром ионов О 2- и Н + . В результате взаимное электростатическое притяжение ионов Г n+ и О 2- станет более слабым, что облегчит диссоциацию по основному типу; одновременно уменьшится взаимное отталкивание ионов Г n+ и Н + , так что диссоциация по кислотному типу затруднится. Следовательно, с возрастанием радиуса иона галогена (при неизменном его заряде) усиливаются основные свойства и ослабляются кислотные свойства. Поэтому изменение кислотных свойств в ряду
НОСl — НОВг — НОI будет идти в сторону уменьшения. Хлорноватистая кислота будет самой сильной, иодноватистая – самой слабой, бромноватистая – промежуточной по силе кислотой из трёх рассматриваемых кислот.

Ионная схема молекулы гидроксида ГОН:


Задача 825.
Почему из всех галогенов только йод образует многоосновные кислородные кислоты? Указать тип гибридизации АО галогенов в их высших кислородных кислотах.
Решение:
Из всех галогенов йод имеет самый большой заряд ядра атома и самое большое количество промежуточных энергетических уровней. У йода, как у атома, так и иона, самый большой радиус из всех галогенов. В результате у йода самое большое межмолекулярное дисперсионное взаимодействие, что обуславливает большую прочность его соединений. Из-за большого атомного объёма йода электростатическое взаимодействие между ионами и становится более слабым, чем между ионами других галогенов и , что, естественно, облегчает диссоциацию кислоты по основному типу; одновременно уменьшится взаимное отталкивание ионов и Н +, что, естественно, затрудняет диссоциацию гидроксида по кислотному типу. Поэтому гидроксиды йода будут являться более сильными основаниями, чем гидроксиды других галогенов, например, хлора и брома. В гидроксиде йода, где атом йода находится в своей высшей степени окисления, в водных растворах возможно образование многоосновных кислот. При взаимодействии йодной кислоты с водой, в зависимости от условий, может образоваться несколько соединений общей формулы (НIO4)n . (Н2О)m. Во всех этих соединениях водород воды способен замещаться на металл так же, как и водород самого гидроксида йода (VII). В связи с этим соединения подобного типа обычно рассматриваются как сложные кислоты и приписывают им следующие форомулы: HIO4 (n = 1, m = 0); H3IO5 (n = 1, m = 1);
H4I2O9 (n = 2, m = 1); H5IO6 (n = 1, m = 2); HIO5 (n = 1, m = 2). Например, были получены H4I2O9 и следующие серебряные соли: оранжевая AgIO4, красная Ag2HIO5, чёрная Ag3IO5, зеленовато-жёлтая Ag2HIO5, чёрная Ag5IO6. В последней из перечисленных выше солей H5IO6 выступает как пятиосновная кислота. Молекула H5IO6 представляет собой несколько искажённый октаэдр. В кристалле между такими молекулами осуществляются водородные связи. При нагревании H5IO6 в вакууме до 80 0 С получается H4I2O9. Свободная H3IO5 не выделена. Строение отвечает октаэдру с йодом в центре, а иона - тетраэдру с йодом в центре.

Типы гибридизации АО галогенов в их кислотах:
а) НГО – тип гибридизации отсутствует;
б) НГО2 - тип гибридизации отсутствует;
в) НГО3 - тип гибридизации sp 3 ;
г) НГО4 - тип гибридизации sp 3 ;
д) Н5IO6 - тип гибридизации sp 3 d 2 .

sp 3 d 2 – гибридные орбитали направлены к вершине октаэдра.

Задача 826.
Как получить НIО3, исходя из свободного йода, диоксида марганца и соляной кислоты? Составить уравнения соответствующих реакций.
Решение:
Получение НIО3 из свободного йода, диоксида марганца и соляной кислоты:
а) При действии раствора соляной кислоты на диоксид марганца можно получить хлор:

б) Йодноватую кислоту можно получить окислен7ием хлора йодом:

По этой реакции хлороводород выделяется в виде газа, который отводят из системы, а раствор выпаривают и получают кристаллическую кислоту НIО3. Йодноватая кислота довольно стойкое вещество, представляющее собой бесцветные кристаллы, которые вполне устойчивые при обычных условиях.

Свойство HClO HClO2 HClO3 HClO4
Степень окисления +1 +3 +5 +7
Название хлорноватистая (гипохлориты) хлористая (хлориты) хлорноватая (хлораты) хлорная (перхлораты)
Константа диссоциации 3,2 × 10 –8 1,1 × 10 –2 10 1 10 10
Кратность связи Cl-O 1,5 1,67 1,75

С увеличением степени окисления и с увеличением кратности связи происходит ослабление связи О – Н за счет смещения электронной плотности по кратной связи Cl – O, увеличивается подвижность Н + , следовательно, с увеличением степени окисления сила кислот увеличивается.

Какая из кислот является наиболее устойчивой? С увеличением кратности связи Cl – O увеличивается устойчивость аниона, а как следствие этого падает его реакционная способность.

Соединения хлора с положительной степенью окисления проявляют окислительные свойства (стремятся перейти в Cl – ).

Хотя с увеличением степени окисления должны усиливаться окислительные свойства, но решающее значение здесь имеет устойчивость аниона, которая увеличивается. В ряду HClO – HClO4 окислительная активность уменьшается. Максимум окислительных свойств приходится на хлористую кислоту HClO2.

Хлорноватистая кислота HClO в свободном состоянии неустойчива, быстро разлагается на ClO2 и Н2О, поэтому существует только в разбавленных водных растворах. Получают путем взаимодействия газообразного хлора с оксидом ртути (II):

Хлорноватистая кислота – слабая кислота. Раствор хлорноватистой кислоты и гипохлоритов имеют желто-зеленую окраску, резкий запах. В водном растворе HClO диспропорционирует:

В растворе под действием света HClO разлагается:

Прим. наибольший практический интерес представляет смешанный хлорид – гипохлорит кальция CaOCl2 (белильная известь) – смесь Ca(ClO)2, CaCl2, Ca(OH)2, который в промышленности получают взаимодействием хлора с гидроксидом кальция:

Белильная известь широко применялась в качестве дезинцифицирующего и отбеливающего средства, а также для получения хлора и кислорода:

Однако из-за низкого содержания активного хлора (36%) и плохой растворимости в воде ее производство резко сократилось. На смену белильной извести пришли гипохлориты кальция и натрия. Хорошим отбеливающим действием обладает жавелевая вода – раствор, образующийся при насыщении хлором раствора гидроксида натрия.

Соли хлорноватистой кислоты – гипохлориты – являются сильными окислителями. Например:

Гипохлориты более устойчивы, чем хлорноватистая кислота, но при комнатной температуре медленно диспропорционируют:

Хлористая кислота HClO2в свободном виде неустойчива. В разбавленных растворах быстро разлагается:

Водные растворы хлористой кислоты получают обработкой хлорита бария Ba(ClO2)2 разбавленной серной кислотой:

В водном растворе хлористая кислота – кислота средней силы. Хлориты используют для отбеливания.

Соли хлористой кислоты – хлориты. Из солей наибольшее применение находит хлорит натрия, получаемый по реакции:

Хлорноватая кислота HClO3существует только в растворе.

Получают действием разбавленной серной кислоты на раствора соответствующих солей:

В водном растворе хлорноватая кислота – сильная кислота.

Прим. хлорноватая кислота по свойствам похожа на азотную кислоту, в частности ее смесь с соляной кислотой является сильным окислителем.

Соли хлорноватой кислоты – хлораты. При нагревании хлораты диспропорционируют. Например, при нагревании твердого хлората калия при температуре 500 ºС протекает следующая реакция:

В присутствии катализатора хлорат калия разлагается с выделением кислорода:

Твердые хлораты являются сильными окислителями.

В смеси с восстановителями хлораты образуют легко взрывающиеся составы. Бертолетову соль используют в производстве спичек и смеси для фейерверков. Хлорат натрия NaClO3 применяется в качестве средства для борьбы с сорняками.

Прим. В водном растворе окислительная способность хлоратов проявляется только в кислой среде.

Хлорная кислота HClO4Чистая хлорная кислота – бесцветная дымящая на воздухе жидкость, смешивается с водой в любых соотношениях.

Хлорную кислоту получают действием концентрированной соляной кислоты на безводный перхлорат натрия NaClO4:

Хлорид натрия, нерастворимый в концентрированной соляной кислоте, отделяют фильтрованием, а фильтрат концентрируют дистилляцией при пониженной давлении в присутствии концентрированной серной кислоты.

Хлорная кислота взрывоопасна, взрывается при соприкосновении с органическими веществами.

Хлорная кислота – одна из наиболее сильных кислот. При охлаждении раствора образуется кристаллогидрат HClO4 × nH2O (n = 1 – 3). Хлорная кислота является окислителем только в концентрированных растворах. При нагревании легко разлагается:

Соли хлорной кислоты – перхлораты. Перхлорат калия получают нагреванием без катализатора:

Другие перхлораты получают взаимодействием хлорной кислоты с соответствующими основаниями или карбонатами. Большинство перхлоратов хорошо растворимы в воде (кроме KClO4, RbClO4, CsClO4). Безводный перхлорат магния Mg(ClO4)2 сильно поглощает воду, образуя кристаллогидраты. Это один из наиболее сильных осушителей (техническое название ангидрон). После поглощения воды нагреванием может быть обезвожен.

В растворе перхлораты не проявляют окислительных свойств, но в сухом состоянии при повышенной температуре – одни из сильных окислителей.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Важнейшие соединения хлора.

Хлористый водород (соляная кислота) HCl.Cодержится в вулканических газах и водах, в желудочном соке. Является бесцветным газом, на воздухе дымит вследствие образования с парами воды капелек тумана. Обладает резким запахом, сильно раздражает верхние дыхательные пути, обладает очень кислым вкусом. tпл=-112 о С [1], tкип=-84 о С [1]. Плотность газообразного хлористого водорода относительно воздуха при 0 о С равна 1,3601. Химические свойства зависят от того, в каком состоянии он находится (может быть в газообразном, жидком состоянии или в растворе). В растворе HCl является сильной кислотой. Вытесняет более слабые кислоты из их солей. Молярная электропроводность при бесконечном разведении при 25 о С равна 426,15 Cм . см 2 /моль [4]. Применяют для получения водорода, хлора, хлоридов, различных органических соединений, в аналитической химии, металлургии и т.д.

Соединения хлора со степенью окисления +1.

Оксид хлора (I) Cl2O.Газ буровато-желтого цвета с резким запахом. tпл=-116 о С, tкип=2 о С. Поражает дыхательные органы. Плотность его относительно воздуха равна 3,007. Легко растворяется в воде, образуя хлорноватистую кислоту. При +4 о С сгущается в жидкость золотисто-красного цвета. Очень неустойчивое соединение, разлагается со взрывом. Получают методом Пелуза при взаимодействии HgO с хлором.

Хлорноватистая кислота HClO.Существует только в растворах. Это слабая и неустойчивая кислота. Легко разлагается на соляную кислоту и кислород. Сильный окислитель. Образуется при растворении хлора в воде.

Соединения хлора со степенью окисления +3.

Хлористая кислота HClO2.В свободном виде неустойчива, даже в разбавленном водном растворе она быстро разлагается. В водном растворе хлористая кислота - это кислота средней силы. Молярная электропроводность при бесконечном разведении при 25 о С равна 401,8 Cм . см 2 /моль [4].

Соединения хлора со степенью окисления +4.

Оксид хлора (IV) ClO2.Зеленовато-желтый газ с неприятным (резким) запахом, плотность относительно воздуха равна 2,315. tкип=11 о С, tпл=-59 о С. Газ легко сжижается в красно-коричневую жидкость. При +65 о С разлагается со взрывом. Фосфор, мышьяк и сера разлагают СlO2, разложение происходит со взрывом. Является сильным окислителем. В лаборатории получают действием крнцентрированной серной кислоты на бертолетову соль.

Соединения хлора со степенью окисления +5.

Хлорноватая кислота HClO3.В свободном виде нестабильна: диспропорционирует на ClO2 и HClO4. Молярная электропроводность при бесконечном разведении при 25 о С равна 414,4 Cм . см 2 /моль [4]. Получают действием на ее соли разбавленной серной кислоты.

Соединения хлора со степенью окисления +7.

Хлорная кислота HClO4.tпл=-101 о С, tкип=16 о С. В водных растворах хлорная кислота - самая устойчивая из всех кислородсодержащих кислот хлора. Безводная хлорная кислота, которую получают при помощи концентрированной серной кислоты из 72%-ной HСlO4 мало устойчива. Безводная хлорная кислота дымит на воздухе, взрывается при 92 о С. Разбавленные растворы окислительных свойств не проявляют, но по кислотным свойствам HСlO4 является самой сильной из кислородсодержащих кислот хлора. Молярная электропроводность при бесконечном разведении при 25 о С равна 417,1 Cм . см 2 /моль [4]. В разбавленных растворах находит применение в качестве реактива при химических анализах. Безводная окисляет бумагу, дерево, уголь до их воспламенения.

Свойства хлора.Хлор – тяжелый (в 2,5 раза тяжелее воздуха) желто-зеленый газ. Молекулы Cl2 легко диссоциируют на атомы при поглощении кванта света, а также при высокой температуре. При 730° С степень диссоциации составляет около 0,02%, а при 1730° С – уже почти 35%. При невысоких давлениях хлор близок к идеальным газам: 1 моль хлора при нормальных условиях занимает объем 22,06 л. При охлаждении до –34° С хлор сжижается, а при –101° С он затвердевает. Температуру сжижения газообразного хлора легко повысить, если увеличить давление; так при давлении 5 атм хлор кипит уже при +10,3° С.

Хлор неплохо растворяется в воде: при 10° С в 1 л воды растворяется 3,15 л хлора, при 20° С – 2,3 л. Образующийся раствор обычно называют хлорной водой. Если насытить хлором при атмосферном давлении холодную (ниже 9,6° С) воду, из раствора выделяются желтоватые кристаллы состава Cl2·6H2O. Такие же кристаллы гидрата хлора образуются при охлаждении влажного газообразного хлора. Нагревая гидрат хлора в одном колене запаянной изогнутой трубки и охлаждая второе колено льдом, Фарадей в 1823 получил жидкий хлор. Хлор хорошо растворяется во многих органических растворителях; так, в 100 г холодного бензола растворяется около 35 г хлора.

Химически хлор очень активен. Он реагирует почти со всеми веществами, даже с платиной (при температурах выше 560° С). А в хлорной воде растворяется и золото. В 1869 профессор химии в Эдинбурге Джемс Альфред Уанклин заметил, что хорошо высушенный хлор не действует на железо и некоторые другие металлы. В результате появилось возможность хранить безводный жидкий хлор в стальных баллонах. Промышленное производство жидкого хлора было налажено в 1888 немецкой фирмой БАСФ.

Хлор активно и с выделением значительного количества тепла реагирует с водородом:

Cl2 + H2 ® 2HCl + 184 кДж. Реакция идет по цепному механизму, и если скорость ее инициирования велика (сильное освещение ультрафиолетовым или сине-фиолетовым светом, нагрев до высокой температуры), смесь газов (если хлора в ней содержится более 11,5 и менее 95%) взрывается (см. также ЦЕПНЫЕ РЕАКЦИИ).

Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl2O – желто-оранжевый газ, ClO2 – желтый газ (ниже 9,7 о С – яркокрасная жидкость), перхлорат хлора Cl2O4 (ClO–ClO3, светло-желтая жидкость), Cl2O6 (O2Cl–O–ClO3, ярко-красная жидкость), Cl2O7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl2O3 и ClO3. Оксид ClO2 производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF3, ClF5, BrCl, ICl, ICl3.

Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K4[Fe(CN)6] + Cl2 ® K3[Fe(CN)6] + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl2 ® RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

СН3СООН + Cl2 ® CH2ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl3СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH3COO)2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

Либиху шутка понравилась, и он опубликовал ее (на французском языке) от имени Ш.Виндлера всего через несколько страниц после статьи Дюма. Намек получился очень прозрачным. Тем не менее прав оказался все же Дюма.

Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH2Cl2, хлороформ CHCl3, четыреххлористый углерод CCl4, трихлорэтилен CHCl=CCl2, тетрахлорэтилен C2Cl4. В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

Читайте также: