Обеззараживание питьевой воды хлором гипохлоритом натрия

Гипохлорит натрия — современная, безопасная для здоровья людей схема химического окисления воды для ее очистки. Вот на этом видео я пью воду сразу после дозации гипохлорита и обезжелезивания (без угольной очистки) доказывая этим своему заказчику и тебе, дорогой читатель, безопасность данного реагента.

Для окисления железа, марганца, сероводорода, органических веществ и для дезинфекции в водоочистке применяется метод пропорционального дозирования водного раствора гипохлорита натрия натрий хлорноватокислый Марки А с помощью насоса дозации, срабатывающего по расходу воды от импульсного водосчетчика.

цена готового комплекта

Есть труба входа воды в систему водоочистки, есть обезжелезиватель и водосчетчик с импульсным герметичным контактом. Смотрим схему ниже. Когда очищенная вода поступает к потребителю — возникает расход воды, счетчик крутится, срабатывает магнитный герметичный контакт (геркон), по сигнальному кабелю подаются импульсы на насос дозации. Насос делает заданное количество впрысков раствора гипохлорита в трубу подачи воды на систему водоочистки в зависимости от скорости поступления импульсов. Больше расход воды — больше импульсов — больше впрысков. Вода перестала расходоваться, счетчик остановился, дозация прекратилась.


Схема обезжелезивания с дозацией гипохлорита

Во время обратной промывки фильтра — обезжелезователя ( backwash) дозация не происходит, потому что вода поступает в обезжелезиватель снизу и нам ни в коем случае не хотелось бы, чтобы там фильтровались твердые фракции окисленных металлов и сера.

ХИМИЯ ПРОЦЕССА: Окисление двухвалентного железа происходит по формуле:

2 Fe(HCO 3 ) 2 + NaClO + H 2 O = 2 Fe(OH) 3 ↓ + 4 CO 2 ↑ + NaCl (10)

Растворенное железо

Кислород воздуха являясь сильным окислителем всегда ищет нечто способное быть окисленным. И как только находит — сразу вспупает в химическую реакцию с этим веществом.

Реакцию присоединения кислорода к чему-либо называют ОКИСЛЕНИЕМ.

Простейшие металлы — железо, марганец легко подвергаются окислению кислородом.

Однако, в глубоких артезианских скважинах железо находится в растворенном состоянии и со временем превращается в коллоидный раствор железа Fe(OH) 3 при попадании в воду кислорода. После коагуляции коллоидный раствор превращается в гидроксид железа Fe 2 O 3 · 3H 2 O — твердый осадок, который застревает в загрузке фильтра-обезжелезивателя.

Однако, кислород воздуха действует медленно, быстро расходуется на окисление, а вот гипохлорит действует быстро и мощно. При взаимодействии с растворенным железом, марганцом, сероводородом и органическими веществами гипохлорит легко отдает атом кислорода. Углекислый газ, освободившись от молекулы железа улетучивается, а окисленное до твердого трехвалентного состояния железо выпадает в осадок и застревает в фильтрующей среде обезжелезивателя. Концентрация пищевой соли и углекислого газа настолько микроскопична, что никак не замечается нами в быту.

Сероводород Н 2 S — очень не приятный и трудноудаляемый из воды элемент, являясь восстановителем препятствует процессу окисления железа, но под воздействием гипохлорита распадается и превращается в серу. В виде сульфатов сера в твердом состоянии опять же застревает в загрузке обезжелезивателя.

Дешево (дешевле тысяч на 15, чем аэрация, стоимость раствора мизерная)

Бесшумно (насос дозации работает гораздо тише компрессора)

Мощно (Гипохлорит — сильный и быстрый окислитель, не нужна контактная емкость)

Точный расчет (Можно расчитать точную дозировку, точное кол-во воздуха не посчитаешь)

Гибкая настройка дозации (можем выбрать насосы разной мощности и разного управления)

Гипохлорит — очень сильный и БЫСТРЫЙ окислитель. Для его использования в бытовых системах очистки воды (дома, коттеджи, дачи, дворцы и замки) при концентрациях до 15мг/л железа не требуется контактная емкость. Гипохлорит подается прямо в трубу в непосредственной близости к обезжелезивателю (осадочному фильтру).

Гипохлорит применяют там, где использование напорной аэрации не рекомендуется — большие концентрации:

сероводорода (от 0,01 мг/л, запах 4-5 баллов),

железа (от 8-10мг/л),

марганца (от 0,7мг/ л) ,

органических веществ (перманганатная окисляемость выше 4,5 ).

Для начала определимся с нормативным количеством активного хлора для окисления загрязнений (по СНиП 2.04.02-84):

Растворенное вещество 1 мг/л

Количество активного хлора

Рассчитаем требуемое количество активного хлора для нашей воды по этой формуле:

АХ (активный хлор г/ч) = ОБЪЕМ ВОДЫ м3/час * (Fe 2+ * K Fe + Mn 2+ * K Mn + H 2 S * K CB )

Fe 2+ — содержание железа в исходной воде, мг/л;

K Fe — расход активного хлора (ах) для окисления железа (0,67мг хлора на 1 мг железа)

Mn 2+ — содержание марганца в исходной воде, мг/л;

K Mn — расход ах для окисления марганца (1,3 мг хлора на 1мг марганца);

[H 2 S] — содержание сероводорода в исходной воде, мг/л;

K CB — расход ах для разрушения сероводорода (2,1 мг хлора на 1 мг сероводорода)

Остаточный, не израсходованный на реакции окисления активный хлор используется для ДИЗИНФЕКЦИИ воды (удаления органических веществ). Его количество определяется экспериментально путем добавления гипохлорита в воду и оценки ее качества.

ПРИМЕР РАСЧЕТА КОЛИЧЕСТВА ГИПОХЛОРИТА для очистки воды:

Грязная вонючая вода из скважины:

Железо двухвалентное 8,8 мг/л

Марганец 0,39 мг/л

Сероводород 0,01 мг/л

Максимальный объем воды 2 куба в час

АХ (г/ч) = 2 * (8,8*0,67 + 0,39*1,3 + 0,01*2,1)=2* (5,9+0,5+0,02)= 12,8 гр . актив. хлора в час или 6,42 мг активного хлора на 1 литр воды.

Плотность концентрата Гипохлорита Марки А — 190 г/л

соответственно, разбавляем его 19:1 с водой.

Количество Гипохлорита

Количество воды

Объем рабочего раствора

На 1 литр Гипохлорита

Теперь, осознав, что при расходе воды 2 куба в сутки нам потребуется дозировать до полутора литров рабочего раствора (10г/л) в сутки прикинем размер емкости.

Гипохлорит, даже разбавленный до 10г/л агрессивная жидкость. Мы не будем наливать емкость под горлышко. И забирается он не со дна, а примерно с глубины 5-10см от дна емкости во избежании попадания в насос песка и всяких твердых осажденных на дно емкости частиц. Сам по себе гипохлорит осадков не создает, но в емкость, как показывает практика, часто попадает строительная пыль и моется такая емкость крайне редко.

Поэтому подбирая подходящую емкость посчитаем на сколько дней нам хватит полезного объема рабочего раствора выбранной нами при условии дозации 12,8г активного хлора для получения 2х кубов чистой воды:

Объем рабочего раствора

Запас полезного объема (ДНЕЙ)

Потребление РАБОЧЕГО РАСТВОРА:

  • 1,5 литра в сутки
  • 45 литров в месяц
  • 550 литров в год

Потребление КОНЦЕНТРАТА 190г/л (Канистра стоимостью 1250 рублей — 30 литров)

  • 100 мл в сутки
  • 3 литра в месяц
  • 36 литров в год

но это не точное количество, все дело в том, что гипохлорит теряет свою плотность…

Гипохлорит Марка А так же как и бензин теряет свою силу со временем. Происходит это под воздействием температуры, света и других факторов. Считается, что за год концентрация активного хлора падает в среднем со 190 до 110 г/л

Поэтому, концентрацию рабочего раствора следует повышать со временем.

И не стоит запасаться гипохлоритом впрок (покупать более 1 канистры).

Гипохлорит в химической промышленности является побочным продуктом всякого вида производств и в то же самое время он находит широкое применение в различных областях народного хозяйства — в рыбоводстве, очистке сточных вод, медицине, растениеводстве, водоподготовке бассейнов и питьевой воды, в химической промышленности в качестве растворителя и так далее.

Стоит он ДЕШЕВО — 1250р за 30 литровую канистру. И купить его не сложно. Он всегда был и будет доступен.

Натрий хлорноватокислый NaOCl или, как я тут много раз говорил — гипохлорит — весьма коррозийно-активное вещество и агрессивен даже к стали, меди и алюминию. К тому же, как мы уже считали, дозировки относительно небольшие — литры в сутки. Дозация происходит в протекающую по трубе воду, поэтому дозировка нужна довольно-таки точная и своевременная.

Поэтому для дозирования гипохлорита используются СПЕЦИАЛЬНЫЕ насосы-дозаторы, кроме того, для водоочистки используются насосы высокого давления . Есть еще насосы-дозаторы безнапорные. Будьте внимательны при выборе насоса.

Насосы дозации бывают двух типов — мембранные и перистальтические.

Более дешевый вариант, создает больше давление, издает щелчки при впрысках реагента.

Практически безшумный, износостойкий, дороже мембранных

В основе работы мембранных насосов — резкие толчки электромагнитного клапана. В основе перистальтических — вращение роликового механизма, проталкивающего раствор по элластичной трубочке. И те и другие бывают как постоянного дозирования — без настроек вообще, так и с возможностью регулирования дозировки, вплоть до встроенного контроллера, который принимает сигнал от внешнего датчика и сам определяет пропорции дозирования.

У нас задача простая: подать нужное количество раствора в протекающую по трубе воду по импульсному сигналу водосчетчика.

Состав комплекта:

Насос дозации мембранный

Емкость полиэтеленовая устойчивая к гипохлориту 50л

Гипохлорит натрия. Марка А 30л (Россия)

Общая стоимость комплекта 272 $ с мембранным и 3 50 $ с перистальтическим

  • канистра гипохлорита 30л 22$

В комплекте с насосом должны поставляться:

Датчик уровня рабочего раствора с кабелем 1-2м

Погружной Фильтр забора рабочего раствора

Насос крепится двумя путями: 1) на стену, 2) на емкость с раствором. В зависимости от ситуации и наличия кронштейна монтажа на емкость — можно выполнить такой монтаж, обычно монтаж на стену ниже или выше уровня водопроводной трубы.

Схема подключения насоса дозации:


Монтируем насос дозации на стену или емкость.

Подсоединяем тубку от насоса к водопроводу. Фитинг подсоединения к водопроводу имеет встроенный обратный клапан.

Подсоединяем трубку от насоса к фильтру забора раствора, который находится в 3-10см выше дна емкости. Это нужно для того, чтобы песок и твердые осадки не попадали в насос.

Датчик уровня рабочего раствора подсоединяется к насосу проводом и опускается в емкость чуть выше уровня фильтра забора для того, чтобы в отсутствии рабочего раствора насос не начала хватать воздух.

Работа без жидкого раствора крайне вредна для мембранных насосов и приводит к быстрому их умиранию. Перистальтический насос не так критичен к работе без раствора, однако, вместо раствора он будет толкать в трубу водоснабжения воздух и система будет завоздушиваться. Это черевато некорректной работой и гидроударами при переключении режимов промывке в клапане обезжелезивателя.

Подключаем сигнальный кабель импульсного водосчетчика

Подключаем питание насоса 220В

Находим заливную пробку в насосе, если такая имеется, наливаем воды в насос.

В процессе монтажа, скорее всего придется сверлить отверстия в пластиковой емкости. Старайтесь сверлить отверстия на полмиллиметра меньше диаметра трубки, чтобы трубка вставлялась в корпус емкости очень плотно. Тогда пыль не будет попадать в емкость и запах гипохлорита не будет выходить из емкости. Следите за тем, чтобы пластиковая стружка после сверления не оставалась в емкости, ее следует тщательно вытряхнуть прежде, чем в емкость будет налит рабочий раствор.

Теперь нужно настроить насос для дозации нужного нам количества рабочего раствора.

Следует заглянуть в две инструкции:

В инструкцию на импульсный водосчетчик для понимания частоты импульсов.

В инструкцию на насос дозации для понимания одной дозы впрыска

Далее, выбираем режим работы насоса DIVIDE, либо MULTIPLY, при котором в нешние импульсы делятся/ умножаются на величину, установленную при программировании. Насос выполняет дозирование с частотой, определенной данным параметром. 1: n впрысков. Иначе говоря — насос совершает N впрысков (настраиваемый параметр) на один импульс водосчетчика.

Водосчетчики бывают с разной ценой деления (частотой) импульсов от 1 до 10 литров. Эта величина неизменна для вида водосчетчика. В зависимости от частоты подачи импульсов нам для пропорциональной дозации следует либо умножать импульсы на заданное число N, либо делить. Смотрите инструкцию на водосчетчик, чтобы определиться с частотой импульсов водосчетчика.

Вот небольшой расчет для мембранного насоса EMEC FMS-MF 0703:

В инструкции на этот насос есть таблица расхода, согласно которой насос перекачивает 0,56 мл раствора за один ход (впрыск) при давлении 3,5 атм.

А нам нужно подать 6,42 мг активного хлора на 1 литр воды.

В 1 литре (1000 мл) рабочего раствора содержится 10 гр (10 000 мг) активного хлора. В 1 мл рабочего раствора таким образом находится 10 мг активного хлора. Значит одном впрыске (0,56 мл) — 5,6 мг ах.

Теперь смотрим инструкцию на счетчик. Наш счетчик СХВ20Д-БЕТАР дает один импульс на 10 литров воды.

За 1 впрыск мы вносим 5,6 мг хлора, на один импульс водосчетчика нужно подать 64 мл раствора, а это значит, что при дозе впрыска 5,6 мг нужно сделать 11,5 впрысков на один импульс от водосчетчика.

Значит импульс мы будем ДЕЛИТЬ, стало быть выбираем режим DIVIDE 1/n

Устанавливаем значени N = 12 для совершения 12 впрысков при поступлении одного импульса.

Теперь, когда мы посчитали в цифрах сколько надо дозировать настраиваем насос дозации и запускаем систему.

После запуска обезжелезивателя, промывки загрузки пускаем воду на расход (в дом), насос срабатывает, дает 12 впрысков на каждые 10 литров воды.

Обратите внимание, у нас есть кран отбора пробы после водосчетчика, перед угольным фильтром. Почти весь гипохлорит должен уходить на окисление железа, остаточный хлор будет удаляться угольным фильтром, таким образом на выходе после угольного фильтра мы будем получать чистую питьевую воду. Без запаха и привкуса.


Схема обезжелезивания с дозацией гипохлорита

Если система дозации настроена правильно, то наливая воду в открытую емкость (ведро) с пробоотборного крана мы должны чувствовать запах свежести. Если присутствует сильный запах хлорки, значит мы где-то ошиблись в расчетах и дозируем слишком много. Если же присуствует легкий запах железа, болота, сероводорода, застоявшейся воды — значит активного хлора дозируется слишком мало и его не хватает на окисление и удаление всех загрязнений в воде. Дозировку следует пересчитать заново и скорректировать.

Так же наличие остаточного хлора можно определить с помощью прибора PH/CL Pooltester для бассейнов

Если на выходе с пробоотборного крана чувствуется запах свежести (запах свеже стиранного белья), вы можете без отвращения выпить пару глотков этой воды и почувствуете очень легкий вкус хлорированной воды, значит дозация настроена ПРАВИЛЬНО.

После угольного фильтра вода должна быть приятной на вкус и не иметь запаха. Показатель железа после теста — 0,3 и менее мг/л

ИНСТРУКЦИЯ НА мембранный насос дозации FMS_MF

Гипохлорит натрия — NaClO, получают хлорированием водного раствора едкого натра (NaOH) молекулярным хлором (Cl2) или же электролизом раствора поваренной соли (NaCl). Подробно о методах получения гипохлорита натрия (ГПХН) можно прочитать в статье. В РФ состав и свойства ГПХН, выпускаемого промышленностью должен соответствовать требованиям, предъявляемым в ГОСТе или ТУ.

Водные растворы Гипохлорита натрия весьма неустойчивы и со временем разлагаются даже при обычной температуре (со скоростью 0,08 до 0,1 % в сутки). На скорость распада ГПХН влияет воздействие солнечного света, наличие катионов тяжелых металлов и хлоридов щелочных металлов. При этом наличие в водном растворе сульфата магния или кальция, борной кислоты, силикатов и пр. замедляют процесс разложения ГПХН. Следует заметить, что наиболее устойчивы растворы с сильнощелочной средой (значение pH > 10).

Кислоты с содержанием хлора представлены разными типами. В общей сложности основных пять:

  • бескислородная соляная;
  • хлорноватистая;
  • хлористая;
  • хлорноватая;
  • хлорная.

Каждая из них является сильным окислителем с широким спектром действия, повсеместно применятся в промышленности, процессах химического синтеза. Хлорноватистая – самая слабая и в то же время важная кислота. Ее составляющая натрий гипохлорит – активно применяемый в быту элемент.

Обеззараживание питьевой воды гипохлоритом натрия. Хлорноватистая кислота и ее соли

Хлорноватистая кислота – самая слабая из перечня в плане действия, зато она легко высвобождается из солей, демонстрирует отличные дезинфицирующие, окислительные, антибактериальные качества. Состав нестабильный, поэтому обычно используется не сама кислота, а ее соли. Основные:

  • гипохлорит калия;
  • натрий гипохлорит;
  • гипохлорит кальция.

В обычных условиях среды эти соли представляют собой твердые кристаллы, разлагающиеся при значительном нагреве и выделяющие свободный хлор. При условии правильной транспортировки, хранения соли незаменимы в медицине, промышленности, хозяйстве.

Количественная оценка эффективности химических бактерицидов и их квалификация. Спектральная активность дезинфицирующих средств

Если разбираться в составе молекул солей, то количественное соотношение элементов будет выглядеть так:

  • 48% хлора;
  • 31% натрия;
  • 21% кислорода.

Заряженный положительно ион натрия связывается за счет ионных взаимодействий с хлорит-ионом. Внутри хлорит-иона связи образуются по ковалентному полярному механизму – неспаренный один ион хлора и шесть электронов соединяются с атомом кислорода. Ион имеет общий заряд CLO-. Химическая формула гипохлорита натрия указывает на строение его молекулы, степени диссоциации внутри водного раствора.

История открытия и использования вещества

Микроэлемент стал известен в 18 веке, когда известный химик К. Шееле открыл элемент хлор. Позже Бертолле обнаружил, что при растворении газа в воде образуется кислотная смесь, которая оказывает отбеливающее и дезинфицирующее действие. Смесь была названа белильной жидкостью, централизовано основали ее массовое производство. Со временем стало ясно, что в данной форме хранить и транспортировать вещество неудобно, так как оно начинает быстро разлагаться под влиянием света, температуры, просто на открытом воздухе. Способ получения компонента был доработан и усовершенствован – едкий хлор стали пропускать через поташ. В результате получался стабильный KCLO. Соединение было названо жавелевой водой, стало активно использоваться в бытовых целях.

Единственный недостаток поташа – высокая цена. В начале 19 века А. Лабаррак заменил поташ на дешевую каустическую соду. Натрий гипохлорит NaCLO до сих пор активно применяется в разных хозяйственных отраслях.

Дезинфекционные свойства хлора и гипохлорита натрия. Гипохлорит натрия для обработки питьевой воды

Физические параметры соединение имеет те же, что другие соли хлорноватистой кислоты. Визуально оно представлено кубическими кристаллами без цвета и запаха, аромат хлора едкий, но слабый. В воде соль растворяется хорошо в любых количествах, реакция среды получается щелочной. Плавятся кристаллы при 18-240С, замерзают в широком диапазоне температур – от -10С до -300С с учетом концентрации раствора. При нагревании на 300 С и более вещество разлагается с освобождением свободного хлора, при еще более высоких температурах разложение может сопровождаться взрывами.

Плотность гипохлорита натрия составляет 1250-1265 кг/м³. Кристаллы на открытом воздухе самопроизвольно плавятся и становятся жидкими. Цвет водного раствора бледно-зеленый, слабый характерный запах присутствует. Соединение начинает быстро разлагаться при внешних воздействиях, попадании в емкость посторонних предметов. Вероятно выделение токсичного хлора, опасного для органов зрения и кожи. Окисляющая реакция сильная.

Натрий гипохлорит из водного раствора выделяется выпариванием с образованием игольчатых кристаллов. С учетом условий среды при разложении могут образовываться различные вещества и продукты. В обычных условиях это соль с кислородом, при нагревании – соль поваренная и хлорат натрия. При действии кислот реакция сопровождается выделением свободного хлора. Окислительные свойства выражены со всеми восстановителями. Соли преобразуют сульфита с нитритами в сульфаты и нитраты, растворяют мышьяк и фосфор с образованием кислот, переводят аммиак в гидразин. Коррозионные свойства выраженные, поэтому вещество для обработки металлических изделий не используется. Главное действие – окисляющее.

Аналоги гипохлорита натрия

Среди аналогов гипохлорита натрия выделяют:

  • Гипохлорит кальция – в гранулах, таблетках или порошке. Препараты отличает значительное включение активного хлора, высокая растворимость в воде, низкая гигроскопичность, стабильность.
  • Хлорную известь – популярное ранее средство дезинфекции. На данный момент известь применяется, но намного реже в силу популяризации электролитических методов по получению хлора с гипохлоритом.
  • Диоксид хлора – нормально растворяется в воде, не вступая с ней в различные реакции. Дезинфицирующее действие более выраженное, чем у хлора, компонент высоко ценят за его бактерицидные, спорицидные, вирицидные свойства. Уничтожает лишние привкусы, запахи. Остаточное содержание в воде значительное, специальные хранилища не нужны.
  • Перманганат калия – главное средство дезинфекции трубопроводов, применение специального сложного оборудования не требует.
  • Йод – с аммиаком, прочими аналогичными веществами не взаимодействует. В продаже йод найти непросто, стоимость он имеет высокую, что усложняет его использование.
  • Хлорид брома – по дезинфицирующим свойствам во многом схож с хлором, может образовывать бромированные соединения.
  • Серебро – уничтожает большинство вредных микроорганизмов, не токсично для человека. Минус средства – дороговизна.

Перечисленные средства не всегда дают требуемые результаты, поскольку ряд организмов к воздействию данных веществ просто не чувствителен. По этой причине широко применяются органические дезинфектанты. К ним относят:

  • альдегиды, кислоты, спирты;
  • фенольные соединения;
  • хлоризоцианураты;
  • кислоты хлорциануровые.

Фенолы применяются преимущественно в медицинско й отрасли в роли дезинфектантов. Среди популярных фенольных соединений – алкилфенолы, галоидфенолы, бифенолы, пр.

Натрий гипохлорит: формула, применение. Обеззараживание воды гипохлоритом натрия

Жавелевую воду получают в промышленных и лабораторных условиях, способы для этого могут использоваться разные.

Первый – хлор пропускается через гидроксид натрия раствор с получением конечного продукта. Это химический способ.

Второй вариант – электрохимический. Он предполагает подвергание электролизу раствора NaCL либо морской воды. Оба решения находят свое повсеместное применение на производствах. Лабораторный синтез предполагает получение малых порций продукта. Он предполагает пропускание хлора через раствор каустика/карбоната натрия.

Дезинфекция питьевой воды

Обеззараживание жидким хлором имеет более широкое применение, чем ГПХН. Жидкий хлор вводится в обрабатываемую воду или используется в хлораторе. Удобнее всего применять в целях дезинфекции хлоратор непрерывного действия. Вакуумные устройства идут с газовыми или жидкостными измерителями расхода хлора.

При прямом хлорировании нужно создавать условия для быстрого распределения хлора в обрабатываемых жидкостях. Хлор вводится с применением диффузора, могут использоваться также смесители – их крепят непосредственно перед контактными резервуарами. Самая простая модель смесителя – ершовая. Она имеет вид лотка с пятью вертикально расположенными перегородками. Эти перегородки сужают сечение, приводят к образованию вихревых потоков, смешиванию хлорной воды с обрабатываемой. Дно лотка обязательно должно иметь уклон.

Расчет расхода гипохлорита натрия для очистки питьевой воды. Выбор концентрации рабочего раствора

За расчетную принимается доза хлора, обеспечивающая указанное количество остаточного элемента. Для осветленной речной воды она составляет 1.5-3 мг/л, для подземной 1 -1,5 мг/л. Увеличение дозы хлора возможно при наличии в воде закисного железа.

Когда будет введен хлорагент, нужно обеспечить его тщательное смешивание с водой. Контакт происходит с водой до момента ее подачи потребителю. Он осуществляется в резервуаре либо трубопроводе, если длины последнего хватает для решения текущих задач. Если один резервуар останавливается для ремонта или промывки, доза хлора повышается в 2 раза.

В ряде случаев целесообразным является проведение предварительного хлорирования. Оно способствует активизации процессов коагуляции, окисляет органические соединения, снижает объемное содержание коагулянта, поддерживает очистные сооружения в отличном санитарном состоянии. Для проведения предварительного хлорирования может потребоваться повышение доз хлора. За счет введения хлора до и после сооружений очистки снижается общий расход вещества в сравнении с его расходом в ходе предварительного хлорирования. Методика называется двойной.

Очистка воды гипохлоритом натрия безопаснее хлора – эксперты

Степень опасности такого токсичного вещества хлора минимизируется за счет принятия ряда мер по организации хранения и использования элемента, в том числе благодаря организации санитарно-защитных зон и складов реагента с радиусом до 1000 м. Поначалу это помогало, но потом начался активный рост городов, жилая застройка стала приближаться к границам территорий, а иногда размещалась на них. Возросла опасности транспортировок реагентов – именно во время перевозок происходит более половины всех химических аварий. В то же время токсичность хлора, которая усиливается высокими концентрациями реагента, негативно влияет на промышленную безопасность, антитеррористическую стойкость систем водообеспечения.

За последние годы нормативная законодательная база в сфере промышленной безопасности при обращении с хлористыми соединениями ужесточается. У эксплуатирующих организаций возникает потребность перехода к безопасному способу обеззараживания водных сред, который был бы не поднадзорен Федеральной службе экологического, технологического и атомного надзора, но обеспечивал выполнение требований СанПиНа. Главной альтернативой хлора является гипохлорит натрия (ГПХН).

Применение жидкого хлора требует неукоснительного соблюдения "Правил по производству, транспортированию, хранению и потреблению хлора" (ПБ 09-594-03), в связи с чем затраты на обеспечение мер безопасности при использовании жидкого хлора многократно превышают затраты на само хлорирование. Затраты же на ликвидацию последствий возможной разгерметизации многотонных запасов жидкого хлора вообще не предсказуемы.

Тем не менее, альтернатива жидкому хлору есть - это технический раствор гипохлорит натрия (ГХН) с концентрацией по активному хлору 190 г/дм3, который является наиболее предпочтительным реагентом на стадии предварительного окисления и последующего обеззараживания питьевой воды перед подачей её в распределительную сеть.

Предприятием Акви ТЭК выполнен ряд проектов реконструкции насосно-фильтровальных станции (НФС) водоподготовки в Свердловской области с применением менее опасного реагента ГХН, взамен существующего хлорирования жидким хлором.

Принятые технические решения позволяют реконструировать НФС без дополнительного строительства. Изменяется обеззараживающий хлорный реагент на первичном, вторичном дозировании; заменяется устаревшее оборудование, устанавливается новое для обеспечения безопасной работы сооружений.

Применение вместо хлора раствора гипохлорита натрия практически не вносит изменения в отработанную на насосно-фильтровальных станциях технологию с точки зрения обеспечения качества получаемой питьевой воды. Вместе с тем, появление возможности размещения складов обеззараживающего реагента (ГХН) непосредственно вплотную к блокам очистки и узлам обеззараживания воды, а не на отдельной площадке, несомненно повышает оперативность управления технологическим процессом, а также практически исключает риск масштабных аварийных ситуаций, которые имеют место при использовании свободного хлора.

Проектные решения предусматривают полную автоматизацию технологических процессов хлорирования исходной воды ГХН. Все операции по дозированию реагента осуществляются в автоматическом режиме с учетом фактических результатов контроля расхода и качества воды. Автоматизированная система управления технологическими процессами (АСУ ТП) обеспечивает постоянный контроль параметров процесса и управление технологическими режимами для поддержания фактических показателей в регламентных значениях.

В проектной документации предусмотрен достаточный комплекс мер для предотвращения аварийной разгерметизации оборудования и локализации выбросов вредных веществ, защиты эксплуатационного персонала.

Принятые технические решения соответствуют требованиям норм и правил в области промышленной безопасности.

Гипохлорит натрия, преимущества использования его как альтернативного хлору реагента при обработке питьевой воды

Гипохлорит натрия марки А (ГХН), ГОСТ 11086-76; ТУ 6-01-29-93 – NaOCL относится к реагентам-дезинфектантам и применяется для окисления и обеззараживания питьевой воды. Плотность раствора при 20 °С – 1,27 г/см3.Слабощелочной раствор довольно устойчив.

Дезинфицирующее действие ГХН основано на том, что при растворении в воде он точно так же, как хлор образует хлорноватистую кислоту, которая оказывает непосредственное окисляющее и дезинфицирующее действие.

При введении гипохлорита натрия в воду образуются хлорноватистая и соляная кислоты по реакции:
NaCLO+H2O=HCLO+NaOH;
HCLO=CLO-+H+

Реакция является равновесной, и образование хлорноватистой кислоты зависит от величины рН и температуры воды.

Гипохлорит натрия обеспечивает эффективную дезинфекцию против всех известных патогенных (болезнетворных) бактерий, вирусов, грибковых инфекций и простейших. Гипохлорит натрия не горюч и не взрывоопасен. Гипохлорит натрия – более активный, чем хлор, малотоксичный, безопасный в эксплуатации и более простой в применении. Поставка реагента в виде технического гипохлорита не представляет серьёзной опасности для окружающих территорий. Вследствие того, что гипохлорит натрия поставляется и применяется в жидком виде, хранить и утилизировать его в случае утечки гораздо проще, чем газообразный хлор.

Содержание хлора в растворе ГХН обычно выражается в процентах веса раствора, например, 1 литр технического гипохлорита весом 1,14 кг содержит 15% или 0,159 кг хлора.
В РФ состав и свойства ГХН, выпускаемого промышленностью, должны соответствовать нормам, указанным в Таблице 10.

Таблица 10 Требования, предъявляемые к товарному гипохлориту натрия

№ п/п Наименование показателя Норма для марки А ОКП 21 4713 0100
1 2 3
1 Внешний вид Жидкость зеленовато-жёлтого цвета
2 Коэффициент светопропускания, % 20
3 Массовая концентрация активного хлора, г/дм3 не менее 190
4 Массовая концентрация щёлочи в пересчёте на NaOH, г/дм 3 10-20
5 Массовая концентрация железа, г/дм3, не более 0,02

Кумулятивными, кожно-резорбтивными свойствами и сенсибилизирующим действием не обладает; по уровню токсичности этот раствор относится к малоопасным веществам 4-го класса опасности.

Разлитый продукт (небольшое его количество) необходимо нейтрализовать 10% раствором сульфита натрия и смыть водой.

Гипохлорит натрия в контакте с органическими горючими веществами (опилки, ветошь и др.) в процессе высыхания может вызвать их самовозгорание. При попадании на окрашенные предметы гипохлорит натрия всех марок может вызвать их обесцвечивание.

При нагревании выше 35°С гипохлорит натрия разлагается с образованием хлоратов и выделением хлора и кислорода. ПДК хлора в воздухе рабочей зоны 1 мг/м3; в воздухе населённых мест допустимая максимальная разовая концентрация 0,1 мг/м3,среднесуточная - 0,03 мг/м3.

Гипохлорит натрия хранят в специальных полиэтиленовых, гуммированных или покрытых коррозийнно-стойкими материалами емкостях, защищённых от солнечного света, в закрытых складских неотапливаемых или мало отапливаемых помещениях.

Помещения для хранения и применения гипохлорита натрия должны быть оборудованы принудительной и приточно-вытяжной вентиляцией. Емкостное оборудование должно быть герметичным.

Индивидуальная защита персонала должна осуществляться с применением специальной одежды и индивидуальных средств защиты: противогазов, перчаток, защитных очков, резиновых сапог, фартуков из прорезиненной ткани.

Сточные воды, содержащие гипохлорит натрия нейтрализуются раствором сульфита натрия до сброса в канализацию.

Не допускается хранить товарный раствор гипохлорита натрия с органическими продуктами, горючими материалами и кислотами.

Водоочистные сооружения могут обойтись без жидкого хлора

Читайте также: