Как составлять электронные уравнения с хлором

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение. Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Метод электронного баланса

В его основе лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

  1. Сначала необходимо составить схему реакции: записать вещества в начале и конце реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

  1. Далее определим какие из соединений являются окислителем и восстановителем; найдем их степень окисления в начале и конце реакции:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6, таким образом, S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

  1. Составим электронные уравнения и найдем коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 ¦ 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 ¦ 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

  1. Далее надо уравнять количества атомов элементов, не изменяющих степень окисления, в такой последовательности: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

  1. Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления. При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде). В ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы: H + — кислая среда, OH — — щелочная среда и H2O – нейтральная среда.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

  1. Сначала необходимо составить схему реакции: записать вещества в начале и конце реакции:

  1. Запишем уравнение в ионном виде, сократив те ионы, которые не принимают участие в процессе окисления-восстановления:

  1. Далее определим окислитель и восстановитель и составим полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + , образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

  1. Находим коэффициент для окислителя и восстановителя, учитывая, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O ¦2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + ¦5 восстановитель, процесс окисления

  1. Затем необходимо просуммировать обе полуреакции, предварительно умножая на найденные коэффициенты, получаем:

Сократив подобные члены, находим ионное уравнение:

  1. Запишем молекулярное уравнение, которое имеет следующий вид:

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — ¦2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O ¦3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

И еще один пример — составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 ¦2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O ¦1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Подробно решение уравнений окислительно-восстановительных реакций (ОВР) методом электронного баланса разобраны на странице "Метод электронного баланса".

Ниже приведены примеры решения уравнений окислительно-восстановительных реакций соединений хлора:

Если в окислительно-восстановительной реакции принимают участие простые вещества, молекулы которых состоят из двух или более атомов элементов, то в электронном балансе кол-во отданных и полученных электронов определяют с учётом кол-ва атомов в молекуле: H2 0 -2e - → 2H +1 .

Уравнения окислительно-восстановительных реакций соединений хлора

1. Уравнение реакции соляной кислоты с кислородом (HCl+O2):

2. Уравнение реакции соляной кислоты с перманганатом калия (HCl+KMnO4):

Следует обратить внимание, что часть хлорид-ионов соляной кислоты окисляется до хлора, а другая часть переходит в состав молекул хлорида калия и хлорида магния без изменения своей степени окисления, поэтому, коэффициенты в первую очередь ставятся перед Cl2, KCl, MnCl2 и только потом, перед HCl.

3. Уравнение реакции соляной кислоты с хромом на воздухе (HCl+Cr):

4. Уравнение реакции соляной кислоты с манганатом калия (HCl+K2MnO4):

5. Уравнение реакции разбавленной соляной кислоты с кальцием (HCl+Ca):

6. Уравнение реакции разбавленной соляной кислоты с гидридом кальция с образованием хлорида кальция и водорода:

7. Уравнение реакции хлорида кальция с водородом с образованием гидрида кальция и соляной кислоты:

8. Уравнение реакции хлорида железа (II) с водородом с образованием железа и соляной кислоты:

9. Уравнение реакции хлорида железа с хлором в нейтральной среде с образованием метагидроксида железа и соляной кислоты:

10. Уравнение реакции окисления на воздухе хлорида железа (III):

11. Уравнение реакции хлорида железа (III) с водородом с образованием хлорида железа (II) и соляной кислоты:

12. Уравнение реакции хлорида меди с алюминием с образованием хлорида алюминия и меди:

13. Уравнение реакции хлорида аммония с нитратом калия с образованием оксида азота, хлорида калия и воды:

14. Уравнение реакции хлорида аммония с магнием с образованием хлорида магния, аммиака и водорода:

15. Уравнение реакции разложения гипохлорита натрия с образованием хлората и хлорида натрия:

16. Уравнение реакции разложения хлората калия с образованием хлорида калия и кислорода:

17. Уравнение реакции хлората калия с алюминием:

18. Уравнение реакции хлората калия с концентрированной соляной кислотой:

19. Уравнение реакции хлората калия с концентрированной серной кислотой:

20. Уравнение реакции хлората калия с серой:

21. Уравнение реакции хлората калия с красным фосфором:

22. Уравнение реакции хлората калия с гидридом кальция:

23. Уравнение реакции разложения хлорной кислоты:

24. Уравнение реакции разложения перхлората калия:

25. Уравнение реакции разложения хлорита натрия:

26. Уравнение реакции гипохлорита кальция с пероксидом водорода:

27. Уравнение реакции хлорноватистой кислоты с иодоводородом:

28. Уравнение реакции разложения оксида хлора (I):

29. Уравнение реакции разложения диоксида хлора при нагревании (сопровождается большим выделением тепла - взрывом):

30. Уравнение реакции диоксида хлора с гидроксидом калия:

31. Уравнение реакции диоксида хлора с озоном:

32. Уравнение реакции диоксида хлора с пероксидом водорода:

33. Уравнение реакции дихлоргексаоксида с гидроксидом калия:

34. Уравнение реакции разложения оксида хлора (VII):

Если вам понравился сайт, будем благодарны за его популяризацию :) Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Задание 236.
Реакции выражаются схемами:
HCl + CrO3 ⇔ Cl2 + CrCl3 + H2O;
Cd + KMnO 4 + H2SO 4 ⇔ CdSO 4 + MnSO 4 + K 2 SO 4 + H 2 O
Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое - восстановителем; какое вещество окисляется, какое - восстанавливается.
Решение:
Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях. Коэффициенты для восстановителя и окислителя идентичны для продуктов окисления и восстановления. . Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором.

а) HCl + CrO 3 ⇔ Cl2 + CrCl 3 + H 2 O

уравнения электронного баланса:


2Cr 6+ + 6Cl - = 2Cr 3+ + 3Cl2 0

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть. Разделив это число на 3, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 6 на 2 получаем коэффициент 3 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: HCl – восстановитель, CrO3 – окислитель; HCl окисляется до Сl2, CrO3 – восстанавливается до CrCl3.

Уравнения электронного баланса:


5Сd 0 + 2Mn 7+ = Cd 2+ + 2Mn 2+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов десять. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: Cd – восстановитель, KMnO 4 – окислитель; Cd окисляется до CdSO 4, KMnO 4 – восстанавливается до MnSO 4.

Задание 237.
Реакции выражаются схемами:
Cr2O3 + KClO3 + KOH ⇔ K2CrO4 + KCl + H2O;
MnSO4 + PbO2 + HNO3 ⇔ HMnO4 + Pb(NO3)2 + PbSO4 + H2O
Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое - восстановителем; какое вещество окисляется, какое - восстанавливается.
Решение:
Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях. Коэффициенты для восстановителя и окислителя идентичны для продуктов окисления и восстановления. . Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором.

уравнения электронного баланса:


2Cr 3+ + Cl 5+ = 2Cr 6+ + Cl -

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть. Разделив это число на 6, получаем коэффициент 1 для окислителя и продукта его восстановления, а при делении 6 на 3 получаем коэффициент 2 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: Cr2O3 – восстановитель, KClO3 – окислитель; Cr2O3 окисляется до K2CrO4, KClO3 – восстанавливается до KCl.

Уравнения электронного баланса:


5Pb 4+ + 2Mn 2+ = 5Pb 2+ + 2Mn 7+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов десять. Разделив это число на 2, получаем коэффициент 5 для окислителя и продукта его восстановления, а при делении 10 на 5 получаем коэффициент 2 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: PbO2 – восстановитель, MnSO4 – окислитель; PbO2 окисляется до Pb(NO3)2, MnSO4 – восстанавливается до HMnO4.

Задание 238.
Реакции выражаются схемами:
H 2 SO 3 + HClO 3 ⇔ H 2 SO 4 + HCl;
FeSO4 + K 2 Cr 2 O 7 + H 2 SO 4 ⇔ Fe 2 (SO 4 ) 3 + Cr 2 (SO 4 ) 3 + K 2 SO 4 + H 2 O
Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое - восстановителем; какое вещество окисляется, какое - восстанавливается.
Решение:
Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях. Коэффициенты для восстановителя и окислителя идентичны для продуктов окисления и восстановления. . Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором.

уравнения электронного баланса:


3S 4+ + Cl 5+ = 3S 6+ + Cl -

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть. Разделив это число на 6, получаем коэффициент 1 для окислителя и продукта его восстановления, а при делении 6 на 2 получаем коэффициент 3 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: H2SO3 – восстановитель, HClO3 – окислитель; H2SO3 окисляется до H2SO4, HClO3 – восстанавливается до HCl.

Уравнения электронного баланса:


3Fe 2+ + Cr 6+ = 3Fe 3+ + Cr 3+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов три. Разделив это число на 3, получаем коэффициент 1 для окислителя и продукта его восстановления, а при делении 3 на 1 получаем коэффициент 3 для восстановителя и продукта его окисления. Учитывая, что в схеме реакции указаны вещества, содержащие железо и хром с двумя атомами в молекулах Fe 2 (SO 4 ) 3 и Cr 2 (SO 4 ) 3], умножим коэффициенты при окислителе и восстановителе на 2, получим молекулярное уравнение реакции:

Задание 239.
Реакции выражаются схемами:
I2 + Cl2 + H2O ⇔ HClO3 + HCl;
K2Cr2O7 + H3PO3 + H2SO4 ⇔ Cr2(SO4)3 + H3PO4 + K2SO4 + H2O
Составьте электронные уравнения. Расставьте коэффициенты в уравнениях реакций. Для каждой реакции укажите, какое вещество является окислителем, какое - восстановителем; какое вещество окисляется, какое - восстанавливается.
Решение:
Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях. Коэффициенты для восстановителя и окислителя идентичны для продуктов окисления и восстановления. . Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором.

уравнения электронного баланса:


I 2 0 + 5Cl2 0 = 2I - + 10Cl -

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов десять. Разделив это число на 2, получаем коэффициент 5 для окислителя и продукта его восстановления, а при делении 10 на 10 получаем коэффициент 1 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: I2 – восстановитель, Cl2 – окислитель; I2 окисляется до HIO3, Cl2 – восстанавливается до HCl.

Уравнения электронного баланса:


3P 3+ + 2Cr 6+ = 3P 5+ + 2Cr 3+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть. Разделив это число на 3, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 6 на 2 получаем коэффициент 3 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: H 3 PO 3 – восстановитель, K 2 Cr 2 O 7 – окислитель; H 3 PO 3 окисляется до H 3 PO 4, K 2 Cr 2 O 7 – восстанавливается до Cr 2 (SO 4 ) 3.

Задание 240.
Могут ли происходить окислительно-восстановительные реакции между веществами: а) РН3 и НВг; б) K2Cr2O7 и Н3PO3; в) HNO3 и Н2S? Почему? На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме:
АsH3 + НNO3  Н3AsO4 + NO2 + Н2O
Решение:
а) Степень окисления в РH3 n(Р) = -3 (низшая), в HBr n(Br) = -1 (низшая). Так как и фосфор, и бром находятся в своей низшей степени окисления, то оба вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;

б) в K2Cr2O7 n(Сr) = +6 (высшая); в Н3PO3 n(Р) = +5 (высшая). Так как и хром, и фосфор находятся в своей высшей степени окисления, то оба вещества проявляют только окислительные свойства и взаимодействовать друг с другом не могут;

в) в HNO3 n(N) = +5 (высшая); в H2S n(S) = -2 (низшая). Следовательно, взаимодействие этих веществ возможно, причём HNO3 является окислителем, а H2S – восстановителем.

Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях. Коэффициенты для восстановителя и окислителя идентичны для продуктов окисления и восстановления. . Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором.
Уравнения электронного баланса:


As 3- + 8N 5+ = As 5+ + 8N 4+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов восемь. Разделив это число на 1, получаем коэффициент 8 для окислителя и продукта его восстановления, а при делении 8 на 8 получаем коэффициент 1 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:



Если мы замерли, или хотим приготовить еду, то зажигаем огонь. Реакция горения это тоже окислительно – восстановительная реакция.

А знаете, что можно согреться и без огня, с помощью химических грелок. Например такой: совершенно сухую смесь железной (Fe) или алюминиевой (Al) стружки с солями меди (например, CuCl2) можно хранить довольно долго, а при добавлении воды температура сразу же повышается почти до 100 о С за счет реакции:
Fe + CuCl2 = FeCl2 + Cu
При этом грелка, в которой хлорид меди CuCl2 превращается в хлорид железа FeCl2, сохраняет тепло около десяти часов.


I. Сущность окисления и восстановления

Если через рас­твор хло­ри­да меди (II) про­пус­кать элек­три­че­ский ток, то на ка­то­де вы­де­лит­ся медь, а на аноде об­ра­зу­ет­ся хлор.


Рис. 1. Элек­тро­лиз рас­тво­ра хло­ри­да меди (II)

Изоб­ра­зим схемы про­те­ка­ю­щих на элек­тро­дах про­цес­сов:

НА КА­ТО­ДЕ: Cu 2+ → Cu 0

НА АНОДЕ: 2Cl - → Сl2 0

Чтобы ка­ти­он меди Cu 2+ пре­вра­тил­ся в элек­то­ней­траль­ный атом меди, он дол­жен при­нять от ка­то­да 2 элек­тро­на. Чтобы из двух ани­о­нов хлора Cl - об­ра­зо­ва­лась мо­ле­ку­ла хлора, они долж­ны от­дать 2 элек­тро­на:

НА КА­ТО­ДЕ: Cu 2+ + 2е → Cu 0 (вос­ста­нов­ле­ние меди)

НА АНОДЕ: 2Cl - - 2е → Сl2 0 (окис­ле­ние хлора)

Таким об­ра­зом, можно сде­лать вывод:

Ве­ще­ство, от­да­ю­щее элек­тро­ны, на­зы­ва­ет­ся вос­ста­но­ви­те­лем . Ве­ще­ство, при­ни­ма­ю­щее элек­тро­ны, на­зывается окис­ли­те­лем.


Рис. 2. Пе­ре­ход элек­тро­нов от вос­ста­но­ви­те­ля к окис­ли­те­лю

Окис­ли­тель, при­ни­мая элек­тро­ны, сам при этом вос­ста­нав­ли­ва­ет­ся. Вос­ста­но­ви­тель, от­да­вая элек­тро­ны, сам окис­ля­ет­ся.

Про­цес­сы окис­ле­ния и вос­ста­нов­ле­ния не могут про­те­кать раз­дель­но друг от друга, по­это­му го­во­рят об окис­ли­тель­но-вос­ста­но­ви­тель­ной ре­ак­ции.


Восстановителем может быть атом элемента, а восстановление - это процесс принятия электронов.


Есть ряд мнемонических правил, которые позволяют лучше запомнить разницу между этими понятиями:

    По первым буквам слов можно составить следующие сокращения:

ОВВ: окислитель - взял e¯ - восстановился

ВОО: восстановитель - отдал - окислился


2. Или использовать словосочетание "окислитель-грабитель".

  • 3. Запомнить стихотворение:
    Восстановитель — это тот, кто электроны отдает.
    Сам отдает грабителю, злодею-окислителю.
    Отдает — окисляется, сам восстановителем является.
  • II. Электронный баланс

    В окис­ли­тель­но-вос­ста­но­ви­тель­ной ре­ак­ции число при­ня­тых элек­тро­нов долж­но быть равно числу от­дан­ных элек­тро­нов. В рас­смат­ри­ва­е­мом про­цес­се элек­трон­ный ба­ланс можно изоб­ра­зить сле­ду­ю­щей схе­мой:

    Cu 2+ + 2Cl - = Cu 0 + Cl2 0

    Если рас­смот­реть сущ­ность еще од­но­го окис­ли­тель­но-вос­ста­но­ви­тель­но­го про­цес­са (между же­ле­зом и суль­фа­том меди (II)), то мы уви­дим, что ка­ти­о­ны меди в этой ре­ак­ции вы­пол­ня­ют роль окис­ли­те­ля. В ре­зуль­та­те про­ис­хо­дит вос­ста­нов­ле­ние меди:

    Роль вос­ста­но­ви­те­ля иг­ра­ет про­стое ве­ще­ство же­ле­зо:

    При этом же­ле­зо окис­ля­ет­ся до двух­за­ряд­но­го ка­ти­о­на.

    В этом методе сравнивают степени окисления атомов в исходных веществах и в продуктах реакции, при этом руководствуемся правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединённых окислителем.
    Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции.

    Вы уже зна­е­те, что окис­ли­тель­но-вос­ста­но­ви­тель­ные ре­ак­ции могут про­те­кать под дей­стви­ем элек­три­че­ско­го тока. Такие ре­ак­ции на­зы­ва­ют элек­тро­ли­зом . Этот про­цесс был по­дроб­но изу­чен Май­к­лом Фа­ра­де­ем. Се­год­ня элек­тро­лиз ши­ро­ко при­ме­ня­ет­ся в про­мыш­лен­но­сти. С по­мо­щью него де­ла­ют копии раз­лич­ных де­та­лей, на­но­сят на сталь­ные де­та­ли ав­то­мо­би­лей за­щит­ный слой дру­го­го ме­тал­ла.

    Рас­смот­рим ре­ак­цию маг­ния с кис­ло­ро­дом. За­пи­шем урав­не­ние этой ре­ак­ции и рас­ста­вим зна­че­ния сте­пе­ней окис­ле­ния ато­мов эле­мен­тов:


    Как видно, атомы маг­ния и кис­ло­ро­да в со­ста­ве ис­ход­ных ве­ществ и про­дук­тов ре­ак­ции имеют раз­лич­ные зна­че­ния сте­пе­ней окис­ле­ния. За­пи­шем схемы про­цес­сов окис­ле­ния и вос­ста­нов­ле­ния, про­ис­хо­дя­щих с ато­ма­ми маг­ния и кис­ло­ро­да.

    До ре­ак­ции атомы маг­ния имели сте­пень окис­ле­ния, рав­ную нулю, после ре­ак­ции - +2. Таким об­ра­зом, атом маг­ния по­те­рял 2 элек­тро­на:


    Маг­ний от­да­ет элек­тро­ны и сам при этом окис­ля­ет­ся, зна­чит, он яв­ля­ет­ся вос­ста­но­ви­те­лем.

    До ре­ак­ции сте­пень окис­ле­ния кис­ло­ро­да была равна нулю, а после ре­ак­ции стала -2. Таким об­ра­зом, атом кис­ло­ро­да при­со­еди­нил к себе 2 элек­тро­на:


    Кис­ло­род при­ни­ма­ет элек­тро­ны и сам при этом вос­ста­нав­ли­ва­ет­ся, зна­чит, он яв­ля­ет­ся окис­ли­те­лем.

    За­пи­шем общую схему окис­ле­ния и вос­ста­нов­ле­ния:


    Число от­дан­ных элек­тро­нов равно числу при­ня­тых. Элек­трон­ный ба­ланс со­блю­да­ет­ся.

    В окис­ли­тель­но-вос­ста­но­ви­тель­ных ре­ак­ци­ях про­ис­хо­дят про­цес­сы окис­ле­ния и вос­ста­нов­ле­ния, а зна­чит, ме­ня­ют­ся сте­пе­ни окис­ле­ния хи­ми­че­ских эле­мен­тов. Это от­ли­чи­тель­ный при­знак окис­ли­тель­но-вос­ста­но­ви­тель­ных ре­ак­ций.

    Окис­ли­тель­но-вос­ста­но­ви­тель­ны­ми на­зы­ва­ют ре­ак­ции, в ко­то­рых хи­ми­че­ские эле­мен­ты из­ме­ня­ют свою сте­пень окис­ле­ния.

    Рас­смот­рим на кон­крет­ных при­ме­рах, как от­ли­чить окис­ли­тель­но-вос­ста­но­ви­тель­ную ре­ак­цию от про­чих ре­ак­ций.

    1. NaOH + HCl = NaCl + H2O

    Для того чтобы ска­зать, яв­ля­ет­ся ли ре­ак­ция окис­ли­тель­но-вос­ста­но­ви­тель­ной, необ­хо­ди­мо рас­ста­вить зна­че­ния сте­пе­ней окис­ле­ния ато­мов хи­ми­че­ских эле­мен­тов.

    1. Na +1 O -2 H +1 + H +1 Cl -1 = Na +1 Cl -1 + H2 +1 O -2

    Об­ра­ти­те вни­ма­ние, сте­пе­ни окис­ле­ния всех хи­ми­че­ских эле­мен­тов слева и спра­ва от знака ра­вен­ства оста­лись неиз­мен­ны­ми. Зна­чит, эта ре­ак­ция не яв­ля­ет­ся окис­ли­тель­но-вос­ста­но­ви­тель­ной.

    В ре­зуль­та­те дан­ной ре­ак­ции сте­пе­ни окис­ле­ния уг­ле­ро­да и кис­ло­ро­да по­ме­ня­лись. При­чем уг­ле­род по­вы­сил свою сте­пень окис­ле­ния, а кис­ло­род по­ни­зил. За­пи­шем схемы окис­ле­ния и вос­ста­нов­ле­ния:

    С -4 -8е =С +4 - про­цесс окис­ле­ния

    О2 0 +4е = 2О -2 - про­цесс вос­ста­нов­ле­ния

    Чтобы число от­дан­ных элек­тро­нов было равно числу при­ня­тых, т.е. со­блю­дал­ся элек­трон­ный ба­ланс, необ­хо­ди­мо до­мно­жить вто­рую по­лу­ре­ак­цию на ко­эф­фи­ци­ент 2:

    С -4 -8е =С +4 - вос­ста­но­ви­тель, окис­ля­ет­ся

    2 0 +8е = 4О -2 - окис­ли­тель, вос­ста­нав­ли­ва­ет­ся

    Окис­ли­тель в ходе ре­ак­ции при­ни­ма­ет элек­тро­ны, по­ни­жая свою сте­пень окис­ле­ния, он вос­ста­нав­ли­ва­ет­ся.

    Вос­ста­но­ви­тель в ходе ре­ак­ции от­да­ет элек­тро­ны, по­вы­шая свою сте­пень окис­ле­ния, он окис­ля­ет­ся.

    V. Алгоритм составления ОВР

    Расставить коэффициенты в реакции, схема которой:

    Алгоритм расстановки коэффициентов

    1. Указываем степени окисления химических элементов.


    Подчёркнуты химические элементы, в которых изменились степени окисления.

    2. Составляем электронные уравнения, в которых указываем число отданных и принятых электронов.


    За вертикальной чертой ставим число электронов, перешедших при окислительном и восстановительном процессах. Находим наименьшее общее кратное (взято в красный кружок). Делим это число на число перемещённых электронов и получаем коэффициенты (взяты в синий кружок). Значит, перед марганцем будет стоять коэффициент-1, который мы не пишем, и перед Cl2 тоже -1.
    Перед HCl коэффициент 2 не ставим, а считаем число атомов хлора в продуктах реакции. Оно равно - 4.Следовательно, и перед HCl ставим - 4,уравниваем число атомов водорода и кислорода справа, поставив перед H2O коэффициент - 2. В результате получится химическое уравнение:


    Рассмотрим более сложное уравнение:

    Расставляем степени окисления химических элементов:


    Электронные уравнения примут следующий вид


    Перед серой со степенями окисления -2 и 0 ставим коэффициент 5, перед соединениями марганца -2, уравниваем число атомов других химических элементов и получаем окончательное уравнение реакции

    Читайте также: