Чем отличается раковые клетки от нормальных аналогов

  • Чем раковые клетки отличаются от нормальных?
  • Каковы причины появления раковых клеток?
  • Какие бывают типы генов рака?
  • Основные характеристики и строение раковых клеток
  • Как выглядят раковые клетки под микроскопом?
  • Как развиваются раковые клетки, какие этапы проходят в своем развитии?
  • Ликвидация раковых клеток: что помогает их уничтожить?


Чем раковые клетки отличаются от нормальных?

Для того чтобы организм человека правильно работал как единое целое, каждая клетка в нем должна подчиняться общим правилам и обладать некоторыми основополагающими свойствами:

Не перестает размножаться. Сколько бы своих копий ни создала опухолевая клетка, она не останавится. Злокачественная опухоль постоянно растет и распространяется в организме.

Не специализируются. Раковая клетка не становится специализированной и не выполняет полезные для организма функции. Процесс клеточной специализации называется дифференцировкой. Чем ниже степень дифференцировки, тем агрессивнее ведет себя рак.


Каковы причины появления раковых клеток?

Почему в теле конкретного человека возникли раковые клетки — вопрос во многом риторический.

Каждая живая клетка функционирует и размножается в соответствии с заложенной в ней генетической информацией. При возникновении определенных мутаций эти тонкие механизмы регуляции сбиваются, и может произойти злокачественное перерождение.

Сложно сказать, что именно привело к таким мутациям в каждом конкретном случае. Современным врачам и ученым известны лишь факторы риска, которые повышают вероятность злокачественного перерождения и развития заболевания. Вот основные из них:

  • Неблагоприятная экологическая ситуация.
  • Курение.
  • Чрезмерное употребление алкоголя.
  • Профессиональные вредности, контакт с канцерогенными веществами и различными излучениями на производстве.
  • Ожирение, избыточная масса тела.
  • Ультрафиолетовое излучение солнца и соляриев.
  • Малоподвижный образ жизни.
  • Возраст: со временем мутации накапливаются, поэтому вероятность возникновения в организме раковых клеток повышена у пожилых людей.
  • Нездоровое питание: преобладание в рационе животных жиров, красного и обработанного мяса.

Ни один из этих факторов не приводит со стопроцентной вероятностью к развитию злокачественной опухоли.

Какие бывают типы генов рака?

Не все мутации одинаково опасны. К раку приводят те, которые возникают в определенных генах:

Онкогены активируют размножение клеток. Злокачественное перерождение происходит, когда они становятся слишком активны. В качестве примера можно привести ген, который кодирует белок HER2. Этот белок-рецептор находится на поверхности клетки и заставляет ее размножаться.

Мутации, которые приводят к раку, могут быть наследственными (возникают в половых клетках) и соматическими (возникают в клетках тела в течение жизни).


Основные характеристики и строение раковых клеток

Раковые клетки обладают тремя основополагающими характеристиками, за счет которых так опасны онкологические заболевания:

  • Способность к бесконтрольному размножению.
  • Способность к инвазии — прорастанию в окружающие ткани.
  • Способность к метастазированию — распространению в организме и образованию новых очагов в различных органах.

Не всякая опухолевая клетка — раковая. Раком или карциномой называют злокачественные опухоли из эпителиальной ткани, которая выстилает кожу, слизистые оболочки внутренних органов, образует железы. Из соединительной ткани (костной, жировой, мышечной, хрящевой, кровеносных сосудов) развиваются саркомы. Злокачественные заболевания органов кроветворения называют лейкозами. Опухоли из клеток иммунной системы — лимфомы и миеломы.

Как выглядят раковые клетки под микроскопом?

Если коротко, то они сильно отличаются от нормальных, тех, что ожидает увидеть патологоанатом, когда рассматривает под микроскопом фрагмент ткани. Раковые клетки имеют более крупные или мелкие размеры, неправильную форму, аномальное ядро. Если нормальные клетки в одной ткани все примерно одинаковых размеров, то раковые зачастую разные. Ядро содержит очень много ДНК, поэтому оно крупнее (его размеры тоже вариабельны), а при окрашивании специальными веществами выглядит более темным.

Из нормальных клеток образуются определенные структуры, например, железы. Раковые клетки располагаются более хаотично. Например, они образуют железы искаженной, неправильной формы или непонятные массы, которые на железы совсем не похожи.


Как развиваются раковые клетки, какие этапы проходят в своем развитии?

Раковые опухоли растут за счет деления клеток, которые входят в их состав. Во время деления злокачественная клетка образует две своих копии, таким образом, рост происходит в геометрической прогрессии. Например, для того чтобы образовалась опухоль размером 1 см, нужно около 30 удвоений. Через 40 удвоений новообразование достигает веса 1 кг, и этот размер считается критическим, смертельным для пациента.

Согласно современным представлениям, за рост злокачественной опухоли отвечают так называемые стволовые опухолевые клетки. Они активно делятся, в то время как другие опухолевые клетки просто существуют. Современные ученые заняты поиском методов лечения, направленных против этих стволовых клеток.

Время удвоения опухолевых клеток бывает разным. Например, при лейкозе это происходит за 4 дня, а при раковых новообразованиях толстой кишки — за 2 года. Проходит много времени, прежде чем опухоль достигнет настолько больших размеров, что станет проявляться какими-либо симптомами. Например, если у онкологического больного появились некоторые жалобы, и после этого он прожил год, вероятно, опухоль в его организме на момент появления жалоб существовала уже около трех лет, просто он об этом не знал.

Пока раковая опухоль небольшая, ей вполне хватает кислорода. Но по мере роста она все сильнее испытывает кислородное голодание — гипоксию. Чтобы обеспечить свои потребности, опухолевые клетки вырабатывают вещества, которые стимулируют образование кровеносных сосудов — ангиогенез.

По мере роста опухоли происходит инвазия — распространение раковых клеток в окружающие ткани. Они вырабатывают ферменты, которые разрушают нормальные клетки.

Некоторые из них отрываются от материнской опухоли, проникают в кровеносные и лимфатические сосуды, образуют в них вторичные очаги — метастазы. В этом самая главная опасность злокачественных опухолей. Именно метастатические очаги становятся причиной гибели многих онкологических пациентов.

Ликвидация раковых клеток: что помогает их уничтожить?

С раковыми клетками можно бороться разными способами. Например, удалить их из организма хирургическим путем. Но это возможно лишь в случаях, если опухоль не успела сильно распространиться в организме. Даже если можно выполнить радикальную операцию, никогда нет стопроцентной гарантии того, что в организме не остались микроскопические опухолевые очаги, которые в будущем станут причиной рецидива. Поэтому зачастую хирургические вмешательства дополняют адъювантной и неоадьювантной терапией.

Другие методы лечения:

В Европейской клинике применяются наиболее современные оригинальные препараты для борьбы с раком. У нас есть возможность провести молекулярно-генетический анализ опухолевой ткани, разобраться, из-за каких мутаций клетки стали злокачественными, и назначить наиболее эффективную персонализированную терапию. Свяжитесь с нами, мы знаем, как помочь.


Раковые клетки и нормальные клетки: чем они отличаются?

Есть много различий между раковыми клетками и нормальными клетками. Некоторые из различий хорошо известны, тогда как другие были только недавно обнаружены и менее понятны. Вы можете быть заинтересованы в том, чтобы узнать чем раковые клетки отличаются от нормальных, поскольку вы справляетесь со своим собственным раком или заболеванием близкого человека. Для исследователей понимание того, что раковые клетки функционируют по-другому, нежели нормальные клетки, закладывает основу для разработки методов лечения, направленных на избавление организма от раковых клеток без повреждения нормальных клеток.

Свойства раковой клетки

Краткое объяснение белков в организме, которые регулируют рост клеток, также полезно для понимания раковых клеток. Наша ДНК несет гены, которые в свою очередь являются основой для протеинов, продуцируемых в организме. Некоторые из этих белков являются факторами роста, химическими веществами, которые позволяют клеткам делиться и расти. Другие белки работают для подавления роста. Мутации в конкретных генах (например, вызванные табачным дымом, радиацией, ультрафиолетовым излучением и другими канцерогенами) могут приводить к аномальному производству белков. Слишком много может быть произведено или недостаточно, или может быть так, что белки ненормальны и функционируют не так, как должны.

Рак является сложным заболеванием, и обычно это сочетание этих аномалий, приводящих к раковой клетке, а не одна мутация или аномалия белка.

Что такое раковые клетки и нормальные клетки?

Ниже приведены некоторые основные различия между нормальными клетками и раковыми клетками, которые, в свою очередь, объясняют, как злокачественные опухоли растут и реагируют на их окружение, нежели доброкачественные опухоли.

Этот список содержит дополнительные различия между здоровыми клетками и раковыми клетками. Для тех, кто хочет пропустить эти технические моменты, пропустите следующий подзаголовок с пометкой различий.

Доброкачественные и злокачественные опухоли

Как отмечено выше, существует много различий в раковых клетках и нормальных клетках, которые составляют либо доброкачественные, либо злокачественные опухоли. Кроме того, существуют способы, при которых выявляются опухоли, содержащие раковые клетки или ненормальные клетки, они ведут себя в организме по другому.

Некоторые из этих дополнительных различий отмечены в этой статье о различиях между доброкачественными и злокачественными опухолями.

Концепция раковых стволовых клеток

Обсудив эти многочисленные различия между раковыми клетками и нормальными клетками, вы можете быть удивлены, что существуют различия между самими раковыми клетками. То, что может быть иерархия раковых клеток - некоторые из которых имеют другие функции, чем у остальных, - является основой обсуждений, рассматривающих раковые стволовые клетки, как обсуждалось выше.

В здоровых тканях или органах, каждая клетка выполняет какую-то определенную функцию. Мышечная клетка вместе с себе подобными обеспечивает мышечное сокращение,

  • нервная – проведение нервного импульса,
  • эпителиальная – разграничение и механическую защиту,
  • секреторная – выделение определенных веществ, и т. д.

Строение этих клеток напрямую зависит от выполняемых ими функций. Иначе говоря, каждая клетка по мере роста проходит дифференцировку.

Что касается раковых клеток, то они являются недифференцированными, незрелыми. Такие видоизмененные клетки не выполняют никаких функций, а быстро делятся, и тем самым обеспечивают быстрый рост раковой опухоли.

Это как мутанты или зомби из фильмов ужасов, которые пожирают и уничтожают нормальных людей – здоровые клетки. Хотя в ряде случаев некое подобие дифференцировки раковых клеток все-таки отмечается.

В этой связи выделяют рак:

  • Низко дифференцированный – практически полное отсутствие дифференцировки и сходства раковой опухоли с какой-либо тканью. Это наиболее злокачественный тип опухоли.
  • Умеренно дифференцированный – определенные признаки дифференцировки все-таки есть, но опухоль практически не имеет сходства со здоровой тканью.
  • Высоко дифференцированный – имеются признаки организации раковых клеток. По этой причине раковая опухоль имеет отдаленное сходство со слизистой оболочкой желудка, из которой она прорастает.

Все виды раковых опухолей, в т.ч. и рак желудка, произрастают из клеток эпителиальной ткани – кожи или слизистых оболочек. В данном случае раковая опухоль берет начало из слизистой оболочки желудка.

В зависимости от гистологических характеристик (особенностей тканевой структуры) выделяют несколько типов рака желудка:

  • Аденокарцинома – опухоль растет из эпителия желез слизистой оболочки желудка. Это наиболее часто встречающийся тип рака желудка. Аденокарцинома желудка имеет несколько разновидностей – муцинозный, тубулярный, перстневидноклеточный, папиллярный рак.
  • Фиброзный или скиррозный рак – опухоль имеет соединительнотканный каркас или строму в виде характерных тяжей. Строма заполняет почти всю опухоль, и между ее элементами находятся раковые клетки.
  • Мозговой или солидный (с ударением на первом слоге) рак – здесь наоборот, стромы практически нет, а вся опухоль представлена раковыми клетками.
  • Слизистый или коллоидный рак – этот тип опухоли растет в подслизистом слое. При этом раковые клетки выделяют слизь, которая со временем приобретает вид характерных наслоений.
  • Мелкоклеточный рак – самый редкий тип рака желудка. Состоит из очень мелких опухолевых клеток, которые образуют скопления в виде пластов. Эти клетки продуцируют биологически активные вещества – гастрин, серотонин.

По направлению роста выделяют следующие формы рака:

Экзофитный рак – опухоль растет в просвет желудка, имеет шаровидную, грибовидную или бляшкообразную форму. С течением времени в центре бляшки может формироваться изъязвление, и такая опухоль напоминает блюдце (блюдцеобразный рак).

Эндофитный рак – опухоль распространяется вдоль слизистой оболочки желудка по подслизистому слою. Такой рак имеет неправильную форму, здесь нет четких границ между здоровой и опухолевой тканью.

С течением времени эндофитный рак прорастает в глубжележащую мышечную и соединительнотканную (серозную) оболочку, и перфорирует желудок.

Чаще всего раковой опухолью поражается конечный отдел желудка, он же антральный или пилорический. В более редких случаях опухоль локализуется в других отделах – начальном (кардиальном), в области дна и малой кривизны, на передней или задней стенке.

Отличительными чертами рака желудка, как и любой другой раковой опухоли, помимо бурного роста и нечетких контуров, является склонность к метастазированию. Близлежащие метастазы формируются в т. н. регионарных лимфатических узлах, расположенных в связках желудка и в забрюшинном пространстве. Отдаленные метастазы поражают различные органы и ткани.

В основу классификации раковых заболеваний положены 3 основных признака злокачественного опухолевого роста:

  • Величина первичной раковой опухоли;
  • Состояние регионарных лимфатических узлов;
  • Отсутствие или наличие отдаленных метастазов.

Стадии рака желудка

Эта классификация носит название TNM. T (tumor) – первичная опухоль N (nodulus) – лимфатические узлы, M (metastasis) – метастазы. По TNM выделяют 4 стадии рака желудка, а вместе с нулевой стадией их пять:

  • Большая опухоль желудка, прорастающая все слои его стенки. Единичные регионарные метастазы. Второй вариант – небольшая опухоль, но со множественными регионарными метастазами. Отдаленных метастазов нет.
  • Опухоль прорастает в слизистый и подслизистый слой желудка. Регионарных и отдаленных метастазов нет.
  • Ракнаместе (carcinoma in situ). Это начальная стадия рака желудка. Опухоль имеет небольшие размеры, четко локализована, прорастания в ближайшие ткани еще нет. Лимфоузлы не поражены, отдаленных метастазов тоже нет.
  • Опухоль увеличивается в размерах, прорастает в мышечный слой. Имеются одиночные метастазы в регионарные лимфоузлы. Отдаленных метастазов нет.
  • Большая опухоль, ограничивающая подвижность желудка. Множественные метастазы в регионарные лимфатические узлы. Имеются отдаленные метастазы.

Метастазирование рака с распространением раковых клеток осуществляется несколькими путями:

Гематогенный – по кровеносным сосудам;

Лимфогенный – по лимфатическим сосудам;

Контактный – непосредственно в близлежащие органы и ткани;

Имплантационный – обсеменение раковыми клетками полого органа.

Метастазы при раке желудка в основном распространяются лимфогенным путем, реже – гематогенным и имплантационным, обсеменяя брюшную полость. Довольно часто рак желудка метастазирует в область тазового дна, в пупок, у женщин в яичники.

Характерным для рака желудка является метастазирование в левый надключичный лимфоузел – т.н. метастаз Вирхова. Гораздо реже раковая опухоль желудка метастазирует в легкие, в печень, в почки и в надпочечники.

Сколько таблиц химических элементов существует на самом деле?

В 1869 году Дмитрий Менделеев представил коллегам из Русского химического общества совершенно новую версию периодической таблицы элементов. С того самого момента прошло 150 лет. Но Дмитрий Иванович не единственный, кто сумел организовать элементы таким образом, чтобы они показали всю сложность устройства мироздания и материи. Большое количество исследователей со всего мира пробовали свои силы в классификации и организации 63 элементов, известных на тот момент. Напомним, что на сегодняшний день обнаружено по крайней мере 118 элементов, включая попытки переставить их в самые странные и необычные таблицы. Из этой статьи вы узнаете, насколько необычной может предстать перед нами всем знакомая и привычная таблица.


Перед вами классификация химических элементов, устанавливающая зависимость различных свойств элементов от их заряда атомного ядра.

Напомним, что таблица химических элементов Дмитрия Ивановича Менделеева представлена в виде периодического закона. Его современная формулировка звучит так: свойства элементов находятся в периодической зависимости от заряда их атомных ядер. На момент написания статьи опубликовано свыше 500 вариантов периодической системы классификации химических элементов, что связано с попытками поиска решения некоторых частных проблем ее структуры. По решению ООН 2019 год был провозглашен Международным годом Периодической таблицы химических элементов.

Периодическая таблица Д.И. Менделеева

Вне зависимости от того, любите вы или ненавидите ее, перед вами оригинальная периодическая таблица Менделеева и, скорее всего, вы всегда ее узнаете. Эта система классификации химических элементов знакома нам с детства и упорядочена по атомному номеру, электронной конфигурации. Необхдимо отметить, что она слабо зависит от химических свойств элементов как таковых. В этой версии таблицы меньше элементов, но зато в ней оставлено место для большего количества еще не открытых элементов, что – как показали годы исследований – оказалось разумным предположением русского ученого.


Всем знакомая периодическая таблица химических элементов Д.И. Менделеева

Периодическая таблица ADOMAH разработанная в 2006 году Валерием Циммерманом. Вместо того, чтобы основываться на атомных числах, систематизирована вокруг четырех квантовых чисел электронной конфигурации, эти четыре числа используются для описания расположения и движения электронов внутри атома. Идея берет свое начало из более старой таблицы инженера и биолога Чарльза Джанета, согласно статье, опубликованной на портале Science Alert. Его работа перестраивала элементы в соответствии с орбитальным заполнением – основной вероятностью нахождения электрона на определенном расстоянии от ядра атома.


Так выглядит периодическая система ADOMAH

Спираль из химических элементов

Спиральная таблица химических элементов, созданная в 1964 году химиком Теодором Бенфеем, выглядит очень красиво. Начиная с середины спирали с водородом, она закручивается наружу в порядке атомных номеров, прежде чем разветвляется на переходные металлы, лантаноиды, актиниды и до сих пор не открытые суперактиниды.


Цветок Менделеева


Сочетание химических эелемнтов может поражать воображение, особенно если взглянуть на него под другим углом

Примечательно, что в этой периодической таблице нет ни водорода, ни гелия. Первая, окрашенная в бирюзовый цвет секция (или лепесток) содержит щелочные металлы спереди и щелочноземельные металлы позади. Другие лепестки, в свою очередь, содержат остальные элементы, сгруппированные по присущим им качествам.

Лента периодических химических элементов

Ниже вы можете увидеть движущуюся вариацию: Названная периодической таблицей скрученная лента, таблица создана Джеймсом Франклином Хайдом в 1975 году. Хайд был химиком, изучающим кремниевую органику, а потому уделил кремнию центральное место в таблице (в бежевой секции в середине двух кругов), подчеркнув, крепкую связь этого элемента с многими другими в таблице.

В периодической системе химических элементов для каждого элемента указывается его символ, название, порядковый номер и значение относительной атомной массы.


Перед вами таблица химических элементов и их взаимодействий

Однако, таблица все еще начинается в центре правого круга с водородом, прежде чем спирально выйти в различные группы. Множество цветов подчеркивают периодические отношения элементов. Красивые изгибы делают это одним из наших любимых вариантов, но это также довольно интенсивно. Для практического рассмотрения вещей ознакомьтесь с этой периодической таблицей, которая рассказывает вам, как использовать эти элементы.


Что такое CRISPR?

Те из вас, кто старается следить за достижениями в области современной биологии, хотя бы раз наверняка сталкивались с упоминанием загадочной технологии CRISPR, которая вроде как революционировала поле боя молекулярных генетиков. Предполагаю, что даже многие биологи плохо себе представляют, как эта штука работает и какие возможности дает, так что решил запилить пост на эту тему. Сразу скажу, что для понимания содержания статьи потребуется как минимум знать, что такое ДНК. Если надо освежить знания – добро пожаловать в мой прошлый пост.

CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats (регулярно расположенные группами короткие палиндромные повторы) – это вообще такие участки генома бактерий и архей, отвечающие за любопытную систему защиты от вирусов. Еще в далеком 2013м ученые смогли заставить эту систему работать в искусственно созданных условиях, заставляя ее резать ДНК не в бактериях, а вполне себе в эукариотических клетках. С тех пор много воды утекло, элементы этой системы подпилили до совершенства и коммерциализировали все кому не лень. Но как же оно все работает в лаборатории и помогает ученым? Давайте разбираться.


Казалось бы, нормальная мышка, но на самом деле это нокаут по гену RAG1, и у этой мышки нет иммунитета.

И вот очень классно было бы иметь способ, позволяющий просто резать ДНК в ровно нужном тебе месте, вырубая именно тот ген, который надо. В принципе, до прихода CRISPR такие методы существовали (см. TALEN, например), но, как правило, они все были довольно трудоемкими в исполнении. CRISPR же - сравнительно простая технология, применение которой легко поставить на поток. Что же конкретно происходит при ее применении? Чтобы разобраться, давайте сначала введем несколько важных терминов, без которых никак.

Сas9 – бактериальный белок, способный вносить двунитевые разрывы в молекулу ДНК (вы же помните, что там две нити, да?).

Guide RNA, или gRNA – специальная молекула РНК, которая служит как система наведения – она заставляет белок Cas9 резать там, где надо. Напомню, что РНК химически очень похожа на ДНК, но так исторически сложилось, что РНК выполняет в клетке иные функции, чем ДНК.

CRISPR RNA, или crRNA – часть gRNA, отвечающая непосредственно за наведение Cas9 на цель.

Tracer RNA, или tracrRNA – вторая часть gRNA, она отвечает за связывание с белком Cas9. В природе эта и предыдущая штуковина – две отдельные молекулы, но в лабораторных опытах, как правило, используют химерную молекулу, в которой эти половинки просто сшиты друг с другом.

Вот теперь можно переходить к практике. Допустим, ученым надо вырубить ген А в культуре клеток. Культура клеток, кстати – это такая каша из клеток, как правило, одного типа, которая просто растет в специальной емкости в лаборатории. Ученые часто с ними работают, чтобы не париться с настоящими животными и не мучить людей. Так вот, ученым известна последовательность ДНК того самого гена А в этих клетках, и они решают использовать метод CRISPR, чтобы сделать грязное дело. Для этого берется (заказывается у поставщика или синтезируется самостоятельно) молекула gRNA, причем молекула эта подбирается таким образом, чтобы ее кусок – crRNA – был комплементарен тому участку гена А, который надо разрезать. К ней подмешивается белок Cas9 – эдакие безумные ножницы, которые очень любят резать ДНК. Однако сами они резать как попало не могут – им надо показать, где резать – именно это и делает gRNA. Эту смесь из gRNA и Сas9 засовывают внутрь клеток (тут есть разные способы, это отдельная история), где она и приступает к работе. Вторая половина gRNA называется tracrRNA, и за нее белок Cas9 цепляется к gRNA. Благодаря crRNA дружная парочка gRNA+Cas9 садится на нужный участок ДНК клетки и режет обе цепи ДНК. Причем не где-нибудь, а в строго определенном месте – между шестой и седьмой буквой того участка генома, который был комплементарен crRNA. Единственное условие тут – первые три буквы этого участка должны быть NGG, где N – это вообще любая буква. Не хочу излишне пудрить вам мозги, но эти волшебные важные три буквы называются PAM site (Protospacer Adjacent Motif).


И вот тут начинается самое интересное. Заметьте, система CRISPR просто вносит разрез, она больше ничего не умеет! Достаточно ли этого, чтобы вырубить ген в клетке? Никак нет. За миллионы лет эволюции живые системы научились беречь ценную ДНК и исправлять в ней всякого рода разрывы, химические поражения и прочие гадости. Занимается этим специальная клеточная контора под названием система репарации ДНК. Как только она замечает, что имеет место двунитевой разрыв ДНК, на место аварии сразу рекрутируются разные белковые комплексы, которые пытаются исправить ситуацию, причем каждый по-своему. Доходит до того, что они реально конкурируют друг с другом за право починить ДНК, и в итоге существует несколько вариантов развития событий.

Вариант 1. Процесс идет по пути негомологичного слияния концов – Non-Homology End Joining (NHEJ). Чертова куча белков прилетает на место разрыва, и работает прям как ваш сантехник – одни отрезают чуть-чуть оборванные концы (не всегда, правда), другие достраивают концы как надо, третьи сшивают место обрыва. Удобно, быстро – но не всегда точно!! Во время достраивания концов иногда в последовательности оказываются буквы, которых там изначально не было, причем их количество тоже может варьировать. Извини, начальник, так получилось. Ну а если все сделали как надо – наш комплекс CRISPR-Cas9 никуда не делся, и он опять порежет это место! И так до тех пор, пока рьяные белки-помощники не изменят место разрыва до такой степени, что Cas9 больше не сможет на него сесть. Ну или Cas9 самовыпилится, устав хреначить ДНК.


Схема путей репарации ДНК. Слева – путь NHEJ, быстрый и неточный. Справа – HDR, использующий гомологичную хромосому в качестве инструкции.

Разумеется, такие эксперименты требуют нехилых умственных и временных затрат: надо заранее продумать последовательность gRNA, чтобы она вела Cas9 к нужному месту в геноме, а не куда-нибудь еще. Если мы идем по пути HDR, то также надо продумать последовательность донора. Кроме того, надо спланировать, как и в каком виде мы будем доставлять все это в клетки – тут есть разные варианты в зависимости от кучи факторов (тип клеток, размер вставки и т.п.). Наконец, последняя часть эксперимента самая нудная – нам надо отсортировать клетки, в которых ничего не поменялось (клетки дикого типа), от тех, где мутация произошла! Тут у ученых тоже имеется целый арсенал методов, от простых на основе ПЦР, типа GCD (Genomic Cleavage Detection), до полногеномного секвенирования на монстроподобных агрегатах.

Надеюсь, мне удалось простым языком объяснить, что же такое CRISPR, и как его применяют! В качестве бонуса фотка меня пару лет назад, когда мне удалось лично познакомиться с применением технологии CRISPR.


Эти зеленые клеточки на экране микроскопа еще вчера были синими, но потом пришел автор и с помощью протокола HDR внедрил однонуклеотидную замену в ген BFP, превратив его в GFP.

Спасибо, что прочитали! До встречи в новых постах!

Читайте также: