Бром и его соединения с хлором

Галогены (греч. hals - соль + genes - рождающий) - химические элементы VIIa группы: F, Cl, Br, I, At. Реагируют с большинством других элементов и органических соединений.

Галогены широко распространены в природе. Их химическая активность падает от фтора к астату.


От F к At (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Все галогены относятся к неметаллам, являются сильными окислителями.


Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 5 :

  • F - 2s 2 2p 5
  • Cl - 3s 2 3p 5
  • Br - 4s 2 4p 5
  • I - 5s 2 5p 5
  • At - 6s 2 6p 5

Для галогенов характерны нечетные степени окисления: -1, +1, +3, +5, +7. Это связано с электронной конфигурацией атомов в возбужденном состоянии.


  • NaCl - галит (каменная соль)
  • CaF2 - флюорит, плавиковый шпат
  • NaCl*KCl - сильвинит
  • 3Ca3(PO4)2*CaF2 - фторапатит
  • MgCl2*6H2O - бишофит
  • KCl*MgCl2*6H2O - карналлит


Галогены в чистом виде можно получить путем электролиза водных растворов и расплавов их солей. Например, хлор в промышленности получают электролизом водного раствора хлорида натрия.

Электролизом расплава гидрофторида калия KHF2 в безводной плавиковой кислоте - HF - был впервые получен фтор.

Более активные галогены способны вытеснять менее активные. Активность галогенов убывает: F → Cl → Br → I.


В лабораторных условиях галогены могут быть получены следующими реакциями.

    Реакции с металлами

Для галогенов характерна высокая реакционная способность. Фтор реагирует со всеми металлами без исключения, некоторые из них в атмосфере фтора самовоспламеняются.

Реакции с неметаллами

Хлор, как и фтор, химически весьма активен. Не реагирует только с кислородом, азотом и благородными газами.


F2 + H2 → HF (в темноте со взрывом)

Галогены вступают в реакцию друг с другом. Чтобы определить степени окисления в получающихся соединениях, вспомните электроотрицательность ;)

Br2 + F2 → BrF (фтор более электроотрицателен, чем бром - F - )

Br2 + I2 → IBr3 (бром более электроотрицателен, чем йод - Br - )

Реакции с водой

Реакция фтора с водой протекает очень энергично, носит взрывной характер.

Хлор реагирует с водой обратимо, образуя хлорную воду - смесь хлорноватистой и соляной кислоты. Бром вступает в те же реакции, что и хлор.


Замечу, что активность йода существенно ниже, чем у остальных галогенов. С неметаллами йод почти не реагирует, а с металлами - только при нагревании.

Реакции с щелочами

Cl2 + NaOH → NaCl + NaClO + H2O

Галогены способны вытеснять друг друга из солей. Более активные вытесняют менее активные.

KBr + I2 ⇸ (реакция не идет, так как йод менее активен, чем бром)

Соединения, образованные из галогенов и водорода. К галогеноводородам относятся следующие вещества:

  • HF - фтороводород (газ), фтороводородная (плавиковая) кислота (жидкость)
  • HCl - хлороводород (газ), соляная кислота (жидкость)
  • HBr - бромоводород, бромоводородная кислота
  • HI - йодоводород, йодоводородная кислота
  • HAt - астатоводород, астатоводородная кислота

При н.у. HCl, HBr, HI - газы, хорошо растворимые в воде.

В промышленности применяют получение прямым методом: реакцией водорода с галогенами.

В лабораторных условиях галогеноводороды можно получить в реакциях обмена между галогенсодержащими солями и сильными кислотами.

HF - является слабой кислотой, HCl, HBr, HI - сильные кислоты. Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.


Галогеноводороды реагируют с основными, амфотерными оксидами и основаниями с образованием соответствующих солей.

KOH + HCl → KCl + H2O (реакция нейтрализации)


Реакции протекают в тех случаях, если в результате выпадает осадок, выделяется газ или образуется слабый электролит (вода).

В некоторых реакциях проявляют себя как сильные восстановители, особенно HI.


В целом взаимодействие галогеноводородов с оксидами неметаллов нехарактерно. В этой связи важно выделить реакцию SiO2 с плавиковой кислотой.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

При растворении брома в воде или растворах едких щелочей образуются соответственно бромноватистая к-та HBrO либо ее соли — гипобромиты. Эти соединения, степень окисления Б. в к-рых равна +1, относятся к числу сильных окислителей. Гипобромиты при нагревании переходят в соли бромноватой к-ты НВr03 со степенью окисления Б. 4-5. Соли бромноватой к-ты — бро-маты — находят применение в неорганическом и органическом синтезе как окислители. Кислородные соединения Б. со степенями окисления +3 и +7 (в отличие от аналогичных соединений хлора и йода) не известны. С галогенами Б. образует 1, а. межгалоидные соединения.

В соединениях с фтором и хлором проявляет положительные степени окисления: +1 (BrF, BrCl),+3 (BrF3) и +5(BrF5); в соединении с йодом степень окисления равна —1 (JBr). Межгалоидные соединения Б. относятся к числу весьма реакцион-носпособных веществ и используются при получении многих неорганических и органических соединений галогенов. Сырьем для получения брома служат морская вода, буровые воды нефтяных месторождений и др. Осн. способ получения Б.— обработка бромсодержащих растворов элементарным хлором. Б.— исходный продукт для получения некоторых бромистых солей, органических производных. Соединения Б. используют в фотографии, при произ-ве некоторых красителей и др. Пары Б. чрезвычайно токсичны, жидкий Б. действует на кожу, вызывая плохо заживающие ожоги.

Бром единственный жидкий не металл . Это вещество красно — бурого цвета , тяжёлое и летучее . Сосуд , в котором находится бром , всегда окрашен его парами в красно — бурый цвет .

Бром имеет тяжёлый неприятный запах ( бром в переводе — зловонный ) . В воде растворяется плохо , образуя бромную воду . Гораздо лучше он растворяется в органических растворителях , бензоле , толуоле , хлороформе .

Если к бромной воде прилить небольшое количество бензола и хорошо взболтать , то после расслаивания можно заметить , как окраска бромной воды исчезает , а собравшийся на верху бензол окрасился в ярко — оранжевый цвет , это объясняется тем , что бензол извлек из воды бром в следствии его лучшей растворимости в бензоле .

Хранят бром в склянках с притёртыми пробками , резиновые пробки для работы с бромом и для работы с хлором , не применимы , так как они быстро разъедаются . Бром намного тяжелее воды ( плотность 3г/см³) и температура кипения 63°C , температура затвердевания — 7,3°C .

Пары брома вызывают удушение . Ядовит и жидкий бром , причиняющий при попадании на кожу сильные ожоги , переливать бром из одного сосуда в другой рекомендуется в резиновых перчатках и под тягой . При попадании на кожу следует смыть органическими растворителями , при смывании водой избежать ожога почти не возможно .

С водородом бром образует бромистый водород :

процесс идёт при сильном нагревании .

Если насыпать в пробирку с жидким бромом немного алюминиевых опилок , то они сгорают в броме с образованием бромистого алюминия , что сопровождается выделением бурых паров брома и искр :

2Al + 3Br2 = 2AlBr3

Также с ним реагируют олово , сурьма , а калий даёт сильный взрыв .

При взаимодействии свободных галогенов со сложными веществами они ведут себя как окислители , например при взаимодействии с водой . В начале Br растворяется в воде с образованием бромной воды ( Br2aq ) , а затем постепенно между водой и галогеном начинается реакция . Бром с водой реагирует очень медленно , а хлор и особенно фтор реагируют очень быстро .

При смешивании свободного галогена ( хлора ) с солью другого галогена ( бромида ) , то бесцветный раствор мгновенно окрашивается в жёлтый цвет . При взбалтывании этого раствора с бензолом характерная окраска бензольного кольца указывает на наличие свободного брома . Это объясняется тем , что хлор как более активный галоген окисляет бром , вытесняя его из соли :

2KBr + Cl = 2KCl + Br2

Более активный по окислению хлор вытесняет менее активный бром , поэтому возможны реакции между иодитом и бромом , йодитом и хлором , бромидом и хлором . Некоторые из этих реакций используют для получения свободных галогенов из их солей , в основном из бромида магния :

MgBr2 + Cl2 = MgCl2 + Br2

Окислительное действие галогенов проявляется и при реакции и с другими сложными веществами , если через бромную воду пропускать сероводород , то очень скоро бромная вода обесцвечивается и образовавшаяся жидкость помутнеет вследствие восстановления Br и окисления .

Соли брома и их применение

Из солей брома следует отметить бромид магния MgBr2 который в природе сопровождает поваренную соль , а также хлорид калия . После извлечения поваренной соли ( NaCl ) из воды в рассоле остаётся значительный процент бромида магния . Так же он встречается в морской воде , но в очень небольших количествах .

Бромид калия и натрия .

Применяют применение в медицине , они сильно понижают возбудимость нервной системы , но лечение бромистыми препаратами допустимо только при здоровых почках , иначе вследствие задержки выделения бромидов из бромидов может наступить отравление , поэтому в настоящее время используют новые менее опасные для организма препараты .

Обладает способностью легко разлагаться на свету с выделением металлического серебра в виде чёрной массы :

2AgBr = 2Ag + Br2

это свойство использовалось и используется в фотографиях .

Лит.: Фиалков Я. А. Межгалоидные соединения. Позин М. Е. Технология минеральных солей.

Вы читаете, статья на тему бром

Понравилась статья, поделись ей

  1. Галогены в природе

Для отправки комментария вам необходимо авторизоваться.

БРОМ (Bromum, Br) – элемент 17 (VIIa) группы периодической системы, атомный номер 35, относительная атомная масса 79,904. Природный бром состоит из двух стабильных изотопов: 79 Br (50,69 ат.%) и 81 Br (49,31 ат.%), а всего известно 28 изотопов с массовыми числами от 67 до 94. В химических соединениях бром проявляет степени окисления от –1 до +7, в природе встречается исключительно в степени окисления –1.

История открытия.

Вплотную к открытию брома практически одновременно подошли сразу трое ученых, но официально признанным первооткрывателем суждено было стать только одному из них.

В 1825 молодой французский химик Антуан Жером Балар (Antoine-Jérôme Balard), работавший препаратором в Фармакологической школе при университете небольшого южного городка Монпелье, приступил к своим первым самостоятельным научным исследованиям. С древнейших времен Монпелье был знаменит своими соляными промыслами. Для добычи соли на берегу моря вырывали бассейны и заполняли их морской водой. После того, как под действием солнечных лучей вода испарялась, выпавшие кристаллы соли вычерпывали, а оставшийся маточный раствор (рапу) возвращали обратно в море.

Позднее выяснилось, что впервые элементарный бром получил не Балар а студент известного немецкого химика Леопольда Гмелина Карл Левиг (Carl Jacob Löwig, Leopold Gmelin), который в 1825 в Гейдельбергском университете выделил его из воды источника в Крейцнахе. Пока он приготовлял большее количество препарата для исследования, появилось сообщение Балара.

Вплотную к открытию брома подошел и знаменитый немецкий химик Юстус Любих, точно так же, как и Балар, принявший его за соединение хлора и иода.

В природе бром почти всегда встречается вместе с хлором в виде изоморфной примеси в природных хлоридах (до 3% в сильвине KCl и карналлите KCl·MgCl2·6H2O). Собственные минералы брома: бромаргирит AgBr, бромсильвинит KMgBr3·6H2O и эмболит Ag(Br, Cl) – встречаются редко и промышленного значения не имеют. Они были открыты гораздо позже элементарного брома (бромаргирит – в Мексике, в 1841). Кларк (среднее содержание в земной коре) брома в земной коре составляет 2,1·10 –4 %.

Большое количество брома содержится в гидросфере Земли (около 3/4 от имеющегося в земной коре): в океанах (6,6·10 –3 %), соляных озерах, подземных рассолах и грунтовых водах. Наибольшая концентрация растворенных бромидов – около 6 мг/л – отмечена в воде Мертвого моря, а общее количество брома в нем оценивается в 1 млрд. тонн. Вместе с брызгами соленой воды соединения брома попадают в атмосферу.

Бром есть и в живых организмах. Содержание брома в живой фитомассе составляет 1,6·10 –4 %. В человеческом теле средняя концентрация брома составляет около 3,7 мг/кг, большая часть его сосредоточена в мозге, печени, крови и почках. Среди неорганических анионов, входящих в состав крови бромид-ион занимает пятое место по количеству после хлорида, гидрокарбоната, фосфата и сульфата; его концентрация в плазме крови находится в пределах 20–150 мкмоль/л. Некоторые животные, грибы и растения (прежде всего бобовые), способны накапливать бром, особенно много его в морских рыбах и водорослях.

Получение брома.

Все промышленные способы получения брома из соляных растворов основаны на его вытеснении хлором из бромидов:

Для выделения брома из полученной смеси бромида и бромата натрия, ее подкисляют серной кислотой:

Если содержание бромидов в исходном сырье достаточно велико, то вместо воздуха экономически выгоднее использовать водяной пар.

Другие предложенные способы извлечения брома из хлорированного рассола: экстракция углеводородами или адсорбция ионообменными смолами – не получили широкого распространения.

Часть используемых в промышленности растворов бромидов (в США до 35%) отправляют на повторную переработку с целью получения дополнительных количеств брома.

Мировое производство брома (по данным на 2003) составило около 550 тыс. тонн в год, большая часть его производится в США (39,4%), Израиле (37,6%), и Китае (7,7%). Динамика производства брома в различных странах мира приведена в таблице 1.

Таблица 1. Динамика мирового производства брома
Табл. 1. ДИНАМИКА МИРОВОГО ПРОИЗВОДСТВА БРОМА (в тыс. тонн).
Страна 1999 2000 2001 2002 2003
США 239 228 212 222 216
Израиль 181 210 206 206 206
Китай 42 42 40 42 42
Великобритания 55 32 35 35 35
Иордания 5 20
Япония 20 20 20 20 20
Украина 3 3 3 3 3
Азербайджан 2 2 2 2 2
Франция 1,95 2 2 2 2
Индия 1,5 1,5 1,5 1,5 1,5
Германия 0,5 0,5 0,5 0,5 0,5
Италия 0,3 0,3 0,3 0,3 0,3
Туркменистан 0,15 0,15 0,15 0,15 0,15
Испания 0,1 0,1 0,1 0,1 0,1
Всего в мире 547 542 523 540 548

Цена элементного брома колеблется от 700 до 1000 долл. за тонну. Годовая потребность России в броме оценивается в 20–25 тыс. тонн, она удовлетворяется, в основном, за счет импорта из США и Израиля.

В лаборатории бром можно получить взаимодействием бромидов с подходящим окислителем, например перманганатом калия или диоксидом марганца, в кислой среде.

Выделившийся бром отделяют экстракцией неполярными растворителями или перегонкой с водяным паром.

Простое вещество.

Бром – единственный неметалл, жидкий при комнатной температуре. Элементный бром представляет собой тяжелую красно-бурую жидкость с неприятным запахом (плотность при 20° C – 3,1 г/см 3 , температура кипения +59,82° C), пары брома имеют желто-бурый цвет. При температуре –7,25° C бром затвердевает, превращаясь в красно-коричневые игольчатые кристаллы со слабым металлическим блеском.

В твердом, жидком и газообразном состоянии бром существует в виде двухатомных молекул Br2, заметная диссоциация на атомы начинается только при 800° C, диссоциация происходит и под действием света. Элементный бром является сильным окислителем, он непосредственно реагирует почти со всеми неметаллами (за исключением инертных газов, кислорода, азота и углерода) и многими металлами, эти реакции зачастую сопровождаются воспламенением (например, с фосфором, сурьмой, оловом):

Многие металлы медленно реагируют с безводным бромом из-за образования на их поверхности пленки бромида, нерастворимого в броме. Из металлов наиболее устойчивы к действию брома (даже при повышенных температурах и в присутствии влаги) серебро, свинец, платина и тантал. Золото, в отличие от платины, легко реагирует с ним, образуя AuBr3.

В водной среде бром окисляет нитриты до нитратов, аммиак до азота, иодиды до свободного иода, серу и сульфиты до серной кислоты:

Бром умеренно растворим в воде (3,58 г в 100 г при 20° C), при охлаждении этого раствора до 6° C из него выпадают гранатово-красные кристаллы клатратного гидрата брома состава 6Br2·46H2O. Растворимость брома существенно возрастает при добавлении бромидов за счет образования прочных комплексных соединений:

В насыщенном растворе бром диссоциирован на 0,85%, в 0,001-молярном – на 17%.

При хранении бромной воды на свету она постепенно разлагается с выделением кислорода из-за фотолиза бромноватистой кислоты:

При взаимодействии брома с растворами щелочей образуются соответствующие бромиды и гипобромиты (на холоду) или броматы:

Br2 + 2NaOH = NaBr + NaBrO + H2O (при t 3 ) бесцветный газ с резким запахом, дымящий на воздухе из-за взаимодействия с парами воды. При охлаждении до –67° C бромоводород переходит в жидкое состояние. HBr хорошо растворим в воде: при 0° C в одном объеме воды растворяется 612 объемов бромоводорода, в растворе HBr диссоциирует на ионы:

Водный раствор HBr называется бромоводородной кислотой, она относится к числу сильных кислот (pKa = –9,5). В HBr бром имеет степень окисления –1 и поэтому бромоводородная кислота проявляет восстановительные свойства, она окисляется концентрированной серной кислотой и кислородом воздуха (на свету):

При взаимодействии с металлами, а также с оксидами и гидроксидами металлов бромоводородная кислота образует соли – бромиды:

HBr + KOH = KBr + H2O

В промышленности бромоводород получают прямым синтезом из элементов в присутствии катализатора (платины или активированного угля) H2 + Br2 = 2HBr и, в качестве побочного продукта, при бромировании органических соединений:

В лаборатории HBr может быть получен при действии концентрированной фосфорной кислоты на бромиды щелочных металлов при нагревании:

Удобным лабораторным методом синтеза HBr является также взаимодействие брома с бензолом или декалином в присутствии железа:

Бромоводород применяется для получения бромидов и некоторых органических соединений брома.

Бромид калия KBr – бесцветное кристаллическое вещество, хорошо растворимое в воде (65 г в 100 г воды при 20° C), tпл = 730° C. Бромид калия применяется при изготовлении фотоэмульсий и в качестве противовуалирующего вещества в фотографии. KBr хорошо пропускает инфракрасные лучи и поэтому служит материалом для изготовления линз для ИК-спектроскопии.

Бромид лития LiBr, представляет собой бесцветное гигроскопичное вещество (tпл = 552° C), хорошо растворимое в воде (63,9% при 20° C). Известен кристаллогидрат LiBr·2H2O. Бромид лития получают при взаимодействии водных растворов карбоната лития и бромоводородной кислоты:

Бромид лития применяют при лечении психических заболеваний и хронического алкоголизма. Из-за высокой гигроскопичности LiBr используется как осушающее вещество в системах кондиционирования воздуха и для обезвоживания минеральных масел.

Бромноватистая кислота HOBr относится к слабым кислотам, она существует лишь в разбавленных водных растворах, которые получают взаимодействием брома с суспензией оксида ртути:

Соли бромноватистой кислоты называются гипобромитами, они могут быть получены взаимодействием брома с холодным раствором щелочи (см. выше), при нагревании щелочных растворов гипобромиты диспропорционируют:

3NaBrO = 2NaBr + NaBrO3

Степени окисления брома +3 соответствует бромистая кислота HBrO2, которая в настоящее время не получена. Известны только ее соли – бромиты, которые можно получить окислением гипобромитов бромом в щелочной среде:

Бромноватая кислота HBrO3 получена в растворах при действии разбавленной серной кислоты на растворы ее солей – броматов:

При попытке получения растворов с концентрацией выше 30% бромноватая кислота разлагается со взрывом.

Бромноватая кислота и броматы являются сильными окислителями:

Бромат калия KBrO3 – бесцветное кристаллическое вещество, растворимое в воде (в 100 г воды при 20° C растворяется 6,9 г KBrO3, при 100° C – 49,7 г). При нагревании до 434° C разлагается без плавления:

Бромат калия получают электролизом растворов KBr или взаимодействием гидроксида калия с бромом и хлором:

KBrO3 применяется в аналитической химии в качестве окислителя при броматометрическом титровании, он входит в состав нейтрализаторов для химической завивки.

Наиболее устойчивой из оксокислот брома является бромная кислота HBrO4, которая существует в водных растворах с концентрацией, не превышающей 6 моль/л. Несмотря на то, что HBrO4 – самый сильный окислитель среди кислородных кислот брома, окислительно-восстановительные реакции с ее участием протекают очень медленно. Так, например, бромная кислота не выделяет хлор из одномолярного раствора соляной кислоты, хотя эта реакция термодинамически выгодна. Особая устойчивость иона BrO4 – связана с тем, что атомы кислорода, окружая атом брома по тетраэдру, эффективно защищают его от атаки восстановителя. Растворы бромной кислоты можно получить подкислением растворов ее солей – перброматов, которые, в свою очередь, синтезируют электролизом растворов броматов, а также окислением щелочных растворов броматов фтором или фторидами ксенона:

Из-за сильных окислительных свойств перброматов они были синтезированы только во второй половине 20 в. американским ученым Эваном Эпплманом (Evan H.Appelman) в 1968.

Кислородные кислоты брома и их соли могут быть использованы в качестве окислителей.

Биологическая роль и токсичность соединений брома.

Многие аспекты биологической роли брома в настоящее время еще не выяснены. В организме человека бром участвует в регуляции деятельности щитовидной железы, так как является конкурентным ингибитором иода. Некоторые исследователи полагают, что соединения брома участвуют в деятельности эозинофилов – клеток иммунной системы. Пероксидаза эозинофилов окисляет бромид-ионы до бромноватистой кислоты, которая помогает разрушать чужеродные клетки, в том числе и раковые. Недостаток брома в пище приводит к бессоннице, замедлению роста и уменьшению числа эритроцитов в крови. Ежедневное поступление брома в организм человека с пищей составляет 2–6 мг. Особенно богаты бромом рыба, злаки и орехи.

Элементный бром ядовит. Жидкий бром вызывает трудно заживающие ожоги, при попадании на кожу его нужно смыть большим количеством воды или раствора соды. Пары брома в концентрации 1мг/м 3 вызывают раздражение слизистых оболочек, кашель, головокружение и головную боль, а в более высокой (>60 мг/м 3 ) – удушье и смерть. При отравлении парами брома рекомендуется вдыхать аммиак. Токсичность соединений брома менее велика, тем не менее, при длительном употреблении бромсодержащих препаратов может развиться хроническое отравление – бромизм. Его симптомы – общая вялость, появление сыпи на коже, апатия, сонливость. Бромид-ионы, поступая в организм в течение длительного времени, препятствуют накоплению иода в щитовидной железе, угнетая ее деятельность. Для ускорения выведения брома из организма назначают диету с большим содержанием соли и обильное питье.

Применение брома и его соединений.

В 19 в. главными областями использования соединений брома были фотография и медицина.

Бромид серебра AgBr стал применяться как светочувствительный материал около 1840. Современные фотоматериалы на основе AgBr позволяют делать снимки с выдержкой 10 –7 секунды. Для изготовления фотопленки на основе бромида серебра, эта соль синтезируется в водном растворе желатина, при этом выпавшие кристаллики AgBr равномерно распределяются по всему объему раствора. После застывания желатина образуется тонкодисперсная суспензия, которую тонким слоем (толщиной от 2 до 20 мкм) равномерно наносят на поверхность носителя – прозрачной пленки, изготовленной из ацетата целлюлозы. В каждом квадратном сантиметре полученного слоя содержится несколько сот миллионов зерен бромида серебра, окруженных желатиновой пленкой. При попадании света на такую фотопленку происходит фотолитическое разложение AgBr:

AgBr + hv = Ag + Br

Протеканию в фотоэмульсии обратного процесса – окисления серебра бромом, препятствует желатина. Фотолиз приводит к образованию в микрокристаллах AgBr групп атомов серебра с размерами 10 –7 –10 –8 см, так называемых центров скрытого изображения. Для получения видимого изображения бромид серебра на засвеченных участках восстанавливают до металлического серебра. Центры скрытого изображения катализируют (ускоряют) реакцию восстановления и позволяют провести ее, практически не затронув неосвещенных кристалликов AgBr. После растворения оставшегося бромида серебра на фотопленке получается черно-белое изображение (негатив), устойчивое к действию света. Для создания позитивного изображения нужно повторить процесс, освещая (обычно) фотобумагу через пленку, на которой с негативным изображением.

Теперь основной областью использования брома является производство антипиренов (от 40% мирового потребления брома). Антипирены – вещества, защищающие материалы органического происхождения от воспламенения. Их используют для пропитки тканей, изделий из древесины и пластмасс, производства негорючих красок. В качестве антипиренов применяются, в основном, ароматические бромпроизводные: дибромстирол, тетрабромфталевый ангидрид, декабромдифенилоксид, 2,4,6-трибромфенол и другие. Бромхлорметан используется в качестве наполнителя огнетушителей, предназначенных для тушения электропроводки.

Значительная часть брома (в США – 24%) в форме бромидов кальция, натрия и цинка расходуется для изготовления буровых растворов, которые закачивают в скважины для увеличения объема добытой нефти.

До 12% брома идет на синтез пестицидов и инсектицидов, используемых в сельском хозяйстве и для защиты деревянных изделий (метилбромид).

Элементный бром и его соединения применяются в процессах водоочистки и водоподготовки. Бром иногда используют для мягкой дезинфекции воды в бассейнах при повышенной чувствительности к хлору. На эти цели расходуется 7% производимого брома.

Около 17% брома расходуется на производство фотографических материалов, фармацевтических препаратов и высококачественной резины (бромбутилкаучука).

Органические соединения брома применяют для ингаляционного наркоза (галотан – 1,1,1-трифтор-2-хлор-2-бромэтан, CF3CHBrCl), в качестве обезболивающих, успокоительных, антигистаминных и антибактериальных препаратов, при лечении язвенных болезней, эпилепсии, сердечно-сосудистых заболеваний. Изотоп брома с атомной массой 82 находит применение в медицине при лечении опухолей и при изучении поведения бромсодержащих препаратов в организме.

Бромбутилкаучук получают в промышленности при неполном бромировании бутилкаучука – сополимера 97–98% изобутилена CH2=C(CH3)2 и ne 2–3% изопрена CH2=C(CH3)CH=CH2. В этом процессе происходит бромирование только изопреновых звеньев макромолекулы каучука:

Введение брома в бутилкаучук существенно повышает скорость его вулканизации. Бромбутилкаучук не имеет запаха, не выделяет вредных веществ при хранении и переработке, он отличается высокой степенью совулканизации с ненасыщенными каучуками и лучшей, чем у бутилкаучука, адгезией к другим полимерам. Галогенированные бутилкаучуки используются для герметизации резиновых изделий из других полимеров (например, в производстве автомобильных шин), для изготовления теплостойких транспортных лент с высоким сопротивлением истиранию, резиновых пробок, химически стойких обкладок емкостей.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.