Активацию злокачественного роста вызывает

ПАТОФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА

1. рост тканей за пределы их нормального объема

2. избыточный тканевой рост, вызванный в организме повреждением или гибелью ткани, отличающийся рядом особенностей химического состава, обмена веществ и антигенных свойств

@3. местное патологическое разрастание тканей, характеризующееся органоидным строением, атипией, относительной автономией, рядом особенностей химического состава, обмена веществ и антигенных свойств

4. местное патологическое разрастание тканей, характеризующееся гибелью клеток

2. К теории этиологии опухолевого роста относится:

3. нервной дистрофии

3. К теории этиологии опухолевого роста относится:

3. нервной дистрофии

4. К теории этиологии опухолевого роста относится:

2. нервной дистрофии

5. К теории этиологии опухолевого роста относится:

2. нервной дистрофии

6. Основоположник вирусной теории возникновения опухолей:

Раус

7. Правильное утверждение: Канцероген – это

агент, вызывающий развитие опухоли

2. только химический агент, вызывающий развитие опухолей

3. вещество, секретируемое опухолевыми клетками

5. ген онковируса

8. Индукцию злокачественного роста вызывает:

4. нарушение функций ЦНС

9. Индукцию злокачественного роста вызывает:

4. нарушение функций ЦНС

10. Индукцию злокачественного роста вызывает:

4. нарушение функций ЦНС

11. К канцерогенам эндогенного происхождения относят:

@1. стероидные гормоны

12. К канцерогенам эндогенного происхождения относят:

13. К канцерогенам эндогенного происхождения относят:

@1. производные триптофана

14. Инфильтрирующий рост ткани наблюдается при:

1. доброкачественном опухолевом росте

@2. злокачественном опухолевом росте

15. Увеличение степени злокачественности опухоли называют

@2. опухолевой прогрессией

4. опухолевой трансформацией

16. Снижение уровня дифференцировки опухолевой ткани называется:

17. Последовательность стадий канцерогенеза:

@1. инициация, промоция, прогрессия, регрессия

2. промоция, инициация, прогрессия, регрессия

3. прогрессия, инициация, промоция, регрессия

4. инициация, прогрессия, промоция, регрессия

5. промоция, прогрессия, инициация, регрессия

18. Протоонкогены – это гены

@1. пролиферации и дифференцировки клеток

2. тормозящие вступление клеток в митоз

3. контролирующие биохимические процессы в опухолевой клетке

4. ответственные за механизмы антибластомной резистентности

5. отвечающие за репарацию поврежденной ДНК

19. К опухолевой трансформации клетки приводит:

@1. превращение протоонкогена в онкоген

2. активация антионкогенов

3. инактивация генов антиапоптоза

4. активация генов апоптоза

5. активация протоонкогенов

20. К активация онкогена приводит:

21. Онкогены – это:

1. гены апоптоза

2. гены, контролирующие обмен веществ

3. неактивные гены роста и дифференцировки клеток

4. гены - супрессоры размножения клеток

@5. измененные протоонкогены, вышедшие из-под контроля

22. Первая стадия канцерогенеза называется:

23. Вторая стадия канцерогенеза называется:

24. Третья стадия канцерогенеза называется:

25. Состояния повышенного онкологического риска:

A) острые воспалительные процессы

Б) хронические воспалительные процессы

В) облучение организма

Г) иммунодефицитные состояния

Д) БЦЖ - вакцинация

26. Для злокачественной опухоли характерно

1. экспансивный рост

@2. инфильтративный рост

3. метастазирование практически отсутствует

4. тканевая атипия незначительная

27. Для злокачественной опухоли характерно

1. экспансивный рост

3. метастазирование практически отсутствует

4. тканевая атипия незначительная

28. Для злокачественной опухоли характерно

1. экспансивный рост

2. метастазирование практически отсутствует

3. тканевая атипия незначительная

@5.резко выражена тканевая атипия

29. Злокачественная опухоль

1. не влияет на общее состояние

2. растет медленно, имеет капсулу

@ 3. растет быстро, разрушая окружающие ткани

4. не рецидивирует

30. Для доброкачественной опухоли характерно:

@1. экспансивный рост

2. инфильтративный рост

4. резко выражена тканевая атипия

31. Для доброкачественной опухоли характерно:

1. инфильтративный рост

@3. метастазирование отсутствует

4. резко выражена тканевая атипия

32. Признак, характерный для доброкачественой опухоли

1. прорастание в окружающие ткани и регионарные лимфоузлы

@ 2. четкие границы опухоли, метастазы не дает

33. Доброкачественная опухоль

1. метастазирует в регионарные узлы

2. метастазирует в отдаленные органы

3. метастазирует в регионарные лимфоузлы и отдаленные органы

X РОССИЙСКИЙ ОНКОЛОГИЧЕСКИЙ КОНГРЕСС

Злокачественные новообразования возникают в результате неограниченной пролиферации клеточного клона, выходящего за пределы собственной ткани и способного к росту на территориях других тканей. При этом в силу высокой генетической изменчивости и селекции, происходящей под давлением со стороны организма, в популяции клеток такого клона постоянно возникают и отбираются все более и более автономные и агрессивные субклоны, что описывается термином "опухолевая прогрессия". В результате довольно длительной эволюции первичного неопластического клона формируется опухоль, способная убить организм. В последнее время достигнут значительный прогресс как в идентификации генов, нарушение функции которых ведет к развитию новообразований, так и в выяснении роли белковых продуктов таких генов в физиологии клетки. Все это позволило выделить ряд важнейших свойств, приобретение которых предопределяет способность клетки образовывать злокачественную опухоль.

Нечувствительность к рост-супрессирующим сигналам, в норме ограничивающим избыточное размножение клеток или пролиферацию в неблагоприятных условиях. В организме существуют множество антипролиферативных сигналов, поддерживающих определенное число клеток в каждой из тканей и предотвращающих размножение аномальных клеток. Они генерируются как нормальными физиологическими факторами (рост-ингибирующие цитокины – TGF-β и др., взаимодействия клеток с внеклеточным матриксом и друг с другом и т.д.), так и неблагоприятными условиями окружающей среды и/или внутриклеточными повреждениями (гипоксия, разрывы ДНК и т.д.). Действие большинства антипролиферативных сигналов основано на активации ингибиторов циклинзависимых киназ семейств Ink4 и Cip/Kip, приводящей к остановке клеточного цикла. В зависимости от типа воздействия и распознающих его молекул наблюдается остановка клеточного цикла в G1, S, G2 фазах или в митозе.

Неопластические клетки, как правило, значительно менее чувствительны к действию различных рост-ингибирующих факторов. Классическим примером здесь может являться отсутствие у них так называемого контактного торможения размножения. Большинство типов нормальных клеток размножаются до тех пор, пока не установятся плотные межклеточные контакты. В отличие от них, неопластические клетки при контактировании друг с другом не останавливают свою пролиферацию, а продолжают делиться и образовывать очаги многослойного роста. Кроме того, во многих опухолевых клетках не происходит остановки клеточного цикла при исчезновении контактов интегринов с внеклеточным матриксом или действии цитокина TGF-β. В неопластических клетках частично инактивированы также системы остановки пролиферации при неблагоприятных условиях – недостатке пула нуклеотидов, гипоксии и т.д. Особое значение для опухолевой прогрессии имеет развитие невосприимчивости к программам/сигналам, ограничивающим число клеточных делений – т.н. иммортализация или приобретение бессмертия.

В основе нечувствительности неопластических клеток к различным рост-ингибирующим сигналам могут лежать разные механизмы. Часто она возникает в результате подавления активности белков семейств Ink4 и Cip/Kip. Так, характерные для многих типов опухолей мутации или эпигенетическая инактивация 16 Ink4a ослабляют контактное торможение размножения клеток и отменяют репликативное старение, т.е. ограничение числа возможных клеточных делений. Инактивация другого представителя белков Ink4 – р15 Ink4b – вызывает понижение чувствительности к антипролиферативному действию цитокина TGF-β. К сходным последствиям ведет и инактивация белка pRb.

Нечувствительность к сигналам, ограничивающим размножение клеток при неблагоприятных условиях микроокружения (гипоксия и др.) и/или различных внутриклеточных повреждениях, обеспечивается дисфункцией белка р53, приводящей к отмене вызываемого стрессами ингибирования циклин-зависимых киназ. Приспособление к гипоксии, кроме того, связано с переходом на анаэробный путь дыхания, индуцируемым как инактивацией р53, так и повышением активности транскрипционного фактора HIF-1.

Отмена репликативного старения связана не только с инактивацией 16Ink4a, но и с повышением активности теломеразы, обладающей способностью достраивать концевые участки хромосом и предотвращать, таким образом, остановку клеточного деления, вызываемого укорочением теломер. Недавно выяснилось, что у теломеразы есть и другая важная функция, не связанная с синтезом теломерных повторов ДНК – стимуляция пролиферации стволовых и незрелых эпителиальных клеток. Существенную роль в отмене обоих механизмов репликативного старения могут играть изменения активности транскрипционного фактора Bmil, который, с одной стороны, подавляет активность ингибиторов циклинзависимых киназ, а с другой стороны повышает экспрессию гена каталитической субъединицы теломеразы. Увеличение активности теломеразы индуцируется также рядом характерных для опухолевых клеток человека изменений: гиперэкспрессией Мус, инактивацией р53, присутствием онкобелка Е6 вирусов папиллом человека и др.

Подавление программируемой смерти клеток. Важнейшим свойством неопластических клеток является их повышенная жизнеспособность, возникающая вследствие ингибирования апоптоза и аутофагии. Апоптоз – основанная на активации каспаз программа самоубийства клеток, посредством которой в организме поддерживается необходимое число клеток и, кроме того, предотвращается накопление аномальных вариантов. Подавление апоптоза резко повышает жизнеспособность неопластической клетки, делает ее менее чувствительной к неблагоприятным условиям микроокружения, факторам противоопухолевого иммунитета и терапевтическим воздействиям.

Дли опухолевых клеток характерны генетические изменения, ведущие к ослаблению различных путей индукции апоптоза. Так, в них закономерно обнаруживаются: потеря экспрессии на поверхности клетки рецептора смерти Fas; нарушения проведения апоптогенного сигнала к митохондриям в результате инактивации р53, PTEN и др.; ингибирование проницаемости митохондриальной мембраны для цитохрома С и AIF вследствие изменений экспрессии белков семейства Вс12; инактивация каспаз ввиду их связывания с белками IAP, экспрессия которых повышается вследствие мутаций Ras, PTEN и др.

В некоторых типах опухолевых клеток наблюдается подавление и другого способа программируемой смерти – аутофагии – программы лизосомальной деградации белков. В частности, это характерно для раковых клеток молочной железы, яичника и простаты, в которых ингибирование аутофагии связано с делецией одного из генных аллелей Beclin1, белковый продукт которого играет ключевую роль в образовании аутофагосом.

Реорганизация цитоскелета и контактных структур, детерминирующая повышенную двигательную активность клеток – основу опухолевой инвазии. "Асоциальное" поведение злокачественных клеток ряда гистогенетических типов выражается, в первую очередь, в инвазивном росте, т.е. в прогрессирующем проникновении в окружающие здоровые ткани. Инвазия детерминирована не только неконтролируемым размножением, но и нарушениями морфогенетических реакций, приводящими к изменениям морфологии и подвижности неопластических клеток. В основе таких нарушений лежат связанные между собой изменения актинового цитоскелета, адгезионных взаимодействий клеток друг с другом и с внеклеточным матриксом, приводящие к увеличению активности псевдоподий и, как следствие, повышению подвижности клеток. Другим важным фактором инвазии опухолевых клеток является их способность продуцировать протеолитические энзимы, которые, во-первых, разрушают окружающий внеклеточный матрикс (базальную мембрану эпителиальных органов и т.д.), создавая тем самым "дороги" для миграции клеток, а, во-вторых, обеспечивают конверсию неактивных форм мотогенных цитокинов, депонированных на матриксе, в активные формы, стимулирующие миграцию клеток.

Как правило, "локомоторный" фенотип неопластических клеток возникает в результате генетических изменений компонентов сигнальных сетей, которые в норме обеспечивают временное приобретение клетками повышенной миграционной способности (такие программы, в частности "эпителиально-мезенхимальный переход" клеток эпителия, характерны для эмбрионального развития). Часто в основе возникновения локомоторного фенотипа лежат те же самые изменения, которые вызывают перманентную стимуляцию пролиферации. Дело в том, что верхние и средние этажи сигнальных путей, активируемых цитокинами, регулируют не только размножение, но и движение клеток. Поэтому многие из цитокинов являются одновременно и митогенами, и мотогенами. Активация белков семейства Ras и PI3K, находящихся на пересечении сигнальных путей от многих рецепторов, ведет к повышению активности как МАР-киназ и циклинзависимых киназ – ключевых регуляторов клеточного цикла, так и малых ГТФ-аз семейства Rho, играющих центральную роль в контроле полимеризации актина, реорганизации цитоскелета и регуляции движения клеток. Кроме того, вызываемые МАР-киназными каскадами, активированными белками Rho и STAT изменения активности большого набора транскрипционных факторов, приводят одновременно к повышению синтеза различных протеаз и подавлению транскрипции гена Е-кадгерина, что обусловливает разрушение межклеточных контактов. В результате в дополнение к пролиферации стимулируется миграция клеток.

Блокирование специфической дифференцировки клеток. Для многих опухолевых клеток характерны нарушения дифференцировки, т.е. образования специализированных типов клеток, синтезирующих набор определенных белков. Особенно ярко это проявляется при острых лейкозах, при которых клетки оказываются как бы замороженными на той или иной стадии созревания. Следует заметить, однако, что это свойство не является универсальным, и в некоторых типах новообразований (хронический миелоидный лейкоз, плоскоклеточный ороговевающий рак кожи и др.) наблюдается сохранение способности к дифференцировке. При этом в ходе опухолевой прогрессии в клетках высокодифференцированных новообразований могут возникать дополнительные генетические изменения, приводящие к потере способности клеток дифференцироваться или синтезировать отдельные белки дифференцировочного репертуара, в особенности тех, отсутствие которых придает клеткам селективные преимущества. В частности, при развитии многих эпителиальных опухолей закономерно утрачивается экспрессия Е-кадгерина, что способствует эпителиально-мезенхимальному переходу, обеспечивающему инвазивный рост.

В опухолевых клетках могут быть нарушены самые разные компоненты сигнальных путей, ответственных за выполнение различных дифференцировочных программ. Так, развитие острых лейкозов связано с блокированием дальнейшей дифференцировки ранних гемопоэтических клеток-предшественников, происходящим вследствие перестроек генов рецепторов цитокинов (c-Kit, Flt3), сенсоров позиционных сигналов от других клеток (Notch 1) и транскрипционных факторов, ответственных за миелоидную (AML1, RARα, c-EBPα, GATA1) или другие типы дифференцировки.

Индукция изменений микроокружения, обеспечивающих кровоснабжение опухолей и стимуляцию их роста и инвазии. К характерным свойствам неопластических клеток относится также их способность воздействовать на окружающие клетки нормальных тканей и вызывать в них ряд реакций, способствующих прогрессивному росту опухолей. Важнейшей из таких реакций является образование новых кровеносных сосудов. Это необходимое условие для дальнейшего роста опухолевого узелка, достигшего в диаметре 2–4 мм (иначе клетки в центре опухоли, не получая кислород и питательные вещества, будут погибать). Стимуляция ангиогенеза – ветвления уже имеющихся в окружающих тканях мелких сосудов и прорастания их в опухоль – вызывается увеличением содержания в микроокружении специфических ангиогенных цитокинов, которые секретируются неопластическими клетками и стимулируют размножение и миграцию (построение трубчатых структур) эндотелиальных клеток. Ключевая роль в этом процессе принадлежит VEGF и ангиопоэтину-2а, также bFGF, PLGF, PD-EGF и некоторым другим митогенным/мотогенным цитокинам. Кроме того, росту новых сосудов способствует уменьшение содержания в микроокружении белков-ингибиторов ангиогенеза, таких как тромбоспондин-1, ангиостатин и эндостатин, а также секреция опухолевыми клетками протеаз, разрушающих внеклеточный матрикс, что необходимо для прорастания новых сосудов. Увеличение содержания VEGF в опухолевых клетках может быть обусловлено различными факторами: гипоксией, которая вызывает активацию транскрипционного фактора HIF-1, повышающего транскрипцию гена VEGF; повышением внутриклеточного уровня активных форм кислорода, что также активирует сигнальный путь HIF-1/VEGF; активацией функции белка Ras, который увеличивает активность транскрипционных факторов АР-1 и HIF1, осуществляющих позитивную регуляцию гена VEGF; инактивацией р53, репрессирующего ген VEGF и др.

Другим важным воздействием неопластических клеток на микроокружение является индукция конверсии стромальных фибробластов в миофибробласты, которые, секретируя определенный набор цитокинов и протеаз, стимулируют инвазивный рост опухолей. Транс-дифференцировака фибробластов в миофибробласты индуцируется TGFb, продуцируемым неопластическими клетками. Еще одной характерной модификацией микроокружения является привлечение в опухоль макрофагов и других клеток воспаления. Это связано с активацией в неопластических клетках ряда сигнальных путей, в частности, регулируемых белками Ras и NFkB, стимулирующих продукцию провоспалительных цитокинов (IL1, IL6, IL8). Предполагается, что присутствие клеток воспаления ускоряет опухолевую прогрессию за счет секреции ими цитокинов, стимулирующих размножение неопластических клеток, ангиогенез и образование миофибробластов, продукции металлопротеаз, а также повышения содержания активных форм кислорода и азота, индуцирующих мутагенез.

Метастазирование. Метастазирование – образование вторичных очагов опухолевого роста – наиболее опасное проявление прогрессии большинства форм опухолей. Чтобы дать метастаз, клетка должна приобрести ряд свойств: умение проникать в глубину окружающих нормальных тканей, в т.ч. в кровеносные или лимфатические сосуды, способность выживать после попадания в сосуды, а затем выходить из них и размножаться в несвойственном для данного типа клеток микроокружении, давая новый очаг опухолевого роста. Таким образом, способность к метастазированию складывается из комплекса более простых признаков, таких как приобретение локомоторного фенотипа, способности стимулировать образование новых сосудов, создавая тем самым пути эвакуации опухолевых клеток из первичного очага; возникновения независимости от субстрата, подавления апоптоза и т.д. Появление каждого из этих свойств увеличивает метастатический потенциал клетки.

Нестабильность генома неопластических клеток. Канцерогенез – многоступенчатый процесс накопления мутаций, детерминирующих возникновение вышеуказанных свойств. Вероятность возникновения в одной клетке нескольких генетических изменений, способствующих развитию из нее злокачественной опухоли, резко повышается при нарушениях работы систем, поддерживающих целостность генома. Поэтому мутации, ведущие к генетической нестабильности (т.е. увеличению вероятности возникновения и закрепления в ряду клеточных поколений разнообразных изменений генома) являются неотъемлемым этапом онкогенеза, обеспечивающим неуклонную прогрессию опухолей. Произошедшие в половой клетке инактивирующие мутации генов, продукты которых участвуют в контроле целостности генома, приводят к наследственным синдромам, характеризующимся нестабильностью генома всех клеток организма или клеток отдельных тканей и, как следствие, повышенной вероятностью их злокачественной трансформации и развития опухолей. В основе генетической нестабильности опухолевых клеток лежит 3 типа нарушений: 1) увеличение внутриклеточного уровня активных форм кислорода (АФК) и других эндогенных мутагенов; 2) понижение точности репликации ДНК и сегрегации хромосом во время митоза; 3) нарушения реакции клеток на изменения структуры ДНК или повреждения митотического аппарата (аномалии систем репарации ДНК; инактивация чекпойнтов клеточного цикла, предотвращающих остановку пролиферации аномальных клеток и подавление апоптоза, элиминирующего поврежденные клетки из организма).

Повышенная изменчивость популяций опухолевых клеток связана не только с резким учащением истинных генетических изменений (генных мутаций, рекомбинаций, анеуплоидии и др.), но и со значительным увеличением вероятности возникновения т.н. эпигенетических изменений, связанных с метилированием ДНК и/или ремоделированием структуры хроматина. Так, в результате нарушения процессов метилирования ДНК, обусловленных изменениями уровня экспрессии ДНК-метилтрансфераз (к таким изменениям, в частности приводят наиболее характерные для новообразований человека генетические изменения – мутации генов р53 и Ras) может одновременно измениться транскрипция нескольких сотен генов.

Естественное развитие большинства злокачественных новообразований проходит через четыре главные фазы: малигнизацию (трансформацию) клеток-мишеней, рост малигнизированных клеток, местную инвазию и развитие дистантных метастазов.

Относительная автономность роста опухолей

Одним из кардинальных свойств опухолей является автономность роста — относительная независимость опухоли от воздействия регуляторных систем организма опухоленосителя и приобретение ею способности к самоуправлению.

При аутокринном механизме клетки опухоли могут одновременно секретировать сигналы для пролиферации и рецепторы для них, что позволяет делящимся клеткам неоплазмы не реагировать на внешние регуляторные влияния организма и быть независимыми от них.

Паракринный механизм связан с секрецией факторов роста опухолевыми клетками и действием их на соседние клетки. Более того, в опухолевых клетках может осуществляться синтез цитокинов и факторов роста и воспринимающих их рецепторов, не характерных для нормальных гистогенетических предшественников.

В то же время автономность роста опухоли относительна. Опухолевые клетки для своей жизнедеятельности должны получать из кровотока питательные вещества и кислород, что делает невозможным их существование вне связи с организмом.

Кроме того, они испытывают постоянное влияние со стороны окружающих нормальных клеток, элементов экстрацеллюлярного матрикса стромы. иммунной, эндокринной и нервной систем. Известно также, что на прогрессирование заболевания влияет пол и возраст больного, У молодых рост и развитие опухопи происходит намного быстрее, чем у пожилых; по частоте заболеваемости рак желудка преобладает у мужчин, а меланома кожи — у женщин и т.д.

Кинетика опухолевых клеток

Скорость роста каждой конкретной опухоли индивидуальна и определяется тремя основными параметрами: продолжительностью клеточного цикла, величиной пролиферативного пула (т.е. числом способных делиться кпеток в опухоли) и уровнем преобладания воспроизведения клеток над их потерей.

Размножение клеток в норме осуществляется путем деления. Время, за которое происходит удвоение клетки и осуществляется полноценная передача генетической информации, называют клеточным циклом (циклом деления), или кинетикой клетки.

Клеточный цикл состоит из двух этапов. Более продолжительный из них — интерфаза. Она занимает до 99% всего времени цикла деления клетки и состоит из трех периодов: G1, G2 и S. Во время интерфазы клетка обладает высокой синтетической активностью и занята воспроизведением своих компонентов.

Затем следует короткий период — митоз (М), во время которого завершается процесс разделения на две дочерние клетки. Клетки, возникающие в результате митотических делений и образующие живой организм, называют соматическими. Основные периоды клеточного цикла показаны на рисунке 6.1.



Рис. 6.1. Схема фаз нормального клеточного цикла [по Вольпе П., 1979 с изменениями].

Первая фаза цикла деления — пресинтетический период или G1-период, наступает поспе митоза и составляет около половины всего жизненного цикла клетки. В этот период происходит интенсивное увеличение цитоплазмы клетки, синтезируются и накапливаются вещества, необходимые для репликации (самовоспроизведения) ДНК. В позднем G1-периоде часть клеток могут выходить из клеточного цикла, дифференцироваться и переходить к выполнению своих функций.

Эти клетки, выполнив свою функцию, в конечном счете погибают. Однако как исключение существуют ткани, в которых специализированные клетки могут возвращаться в клеточный цикл, например клетки печени. Такой клеточный цикл называется продленным.

Опухолевые клетки также способны выходить из клеточного цикла, находиться в фазе покоя и вновь возвращаться в клеточный цикл, сохраняя способность к дальнейшему делению.

Вторая фаза — S-период или синтетический, составляет до 30% продолжительности цикла и характеризуется удвоением числа хромосом, в результате чего плоидность клетки возрастает до четырех. При входе в эту фазу клетка всегда проходит и все последующие стадии цикла деления.

Третья фаза — постсинтетический период или G2-период, когда клетка готовится к митозу. В ней происходит интенсивный синтез цитоплазматических белков и белков, связанных с ДНК. G2-период занимает около 19-20% продолжительности всего цикла.

Митоз, или фаза М, — самый короткий по продолжительности период, занимающий примерно 1% времени всего цикла.

В этой фазе в тетраплоидной клетке (общее число хромосом 4n) каждая хромосома разделяется вдоль по длине, образуя две копии (сестринские хроматиды), ядро раздваивается, а цитоплазма делится пополам, и в результате образуются две дочерние клетки. Каждая дочерняя клетка после митоза содержит по две копии каждой хромосомы. Эти копии называются гомологичными хромосомами.

Общее число хромосом в клетке, известное как диплоидный набор, обозначают 2n. Митотическое деление гарантирует постоянство набора хромосом в соматических клетках. Что касается продолжитепьности клеточного цикла, то в норме она варьирует в разных клетках. По классическим представлениям фазы цикла относительно стабильны по продолжительности (в среднем, G1 — 8 ч; S — 6 ч: G2 — 4 ч; М — до 2 ч), а весь цикл занимает у клеток млекопитающих, в среднем, около 20 ч (рис 6.1).

Следует сказать, что одним из ведущих механизмов действия современных противоопухолевых химиопрепаратов является избирательное воздействие на определенные структуры клетки в разные фазы клеточного цикла. Фазовозависимость цитостатиков обязательно учитывается при проведении химиотерапии.

В опухолевых клетках имеются те же фазы, что и в нормальных. Иногда при злокачественном росте встречается прямое деление — амитоз, когда клетка делится без разрушения ядра и ядрышек.

Кишки большинства опухолей обладают такой же и даже большей продолжительностью клеточного цикла, чем клетки нормальных, быстро обновляющихся тканей. Об этом убедительно говорят авторадиографические исследования. Не существует ни одной опухоли, клетки которой достигали бы скорости размножения нормальных костно-мозговых клеток или клеток покровного эпителия кишечника.

Здесь следует отметить, что, к сожалению, более высокий уровень пролиферации клеток в нормальных тканях, чем в некоторых опухолях, является существенным препятствием для их успешного химиолучевого лечения.

Изучение опухолей показало, что их клональный характер не означает одинаковости всех их клеток, особенно — в отношении клеточного цикла. Клеточный состав опухоли обычно представлен необратимо постмитотическими клетками (составляют от 30 до 70% всех клеток опухоли), т.е. не способными делится, вплоть до момента гибели; покоящимися клетками (законсервированы в фазе G0), способными снова войти в митотический цикл (стволовые опухолевые клетки) и клетками с различной продолжительностью фазы G1, составляющие пролиферирующий пул опухолевых клеток и относящиеся к фракции роста (рис. 6.2).



Рис. 6.2. Клеточный состав типичной опухоли [Cajano А. и соавт., 1972].
I — необратимо посмитотические клетки;
II — покоящиеся клетки (способны снова войти в митотический цикл);
Ill — клетки в митотическом цикле с различной продолжительностью фазы G1

Темп роста новообразования и определяется в основном величиной фракции роста. На ранних, субмикроскопических стадиях опухолевого роста подавляющее большинство злокачественных клеток находится в цикле, составляя пролиферативный пул или фракцию роста.

По мере роста опухоли клетки во все более увеличивающемся количестве покидают этот пул вследствие потерь или возвращения в фазу G0. Поэтому ко времени клинического обнаружения опухоли большинство ее клеток не находится в репликационном пуле.

В тоже время многие опухоли, например рак толстой кишки или молочной железы, имеют небольшие фракции роста. Наилучшим, хоть и грубым морфологическим выражением темпа роста опухоли (пролиферативной активности) является частота митозов или митотический индекс (доля митозов в исследуемой популяции клеток).

Их можно оценить просто по количеству фигур митоза в единице площади гистологического среза опухолевой ткани, с помощью проточной цитометрии или методом авторадиографии с меченым предшественником ДНК — Н-тимидином.

Общеизвестно, что от величины фракции роста опухолевых клеток зависит чувствительность новообразования к химиотерапии. Поскольку большинство цитостатиков действуют на клетки, активно синтезирующие ДНК, нетрудно понять, почему опухоли, содержащие, скажем, 5% своих клеток в репликационном пуле, являются медленно растущими, но относительно устойчивыми к химиотерапии.

И напротив, агрессивные, быстро растущие опухоли (лимфомы и др.), имеющие большой пуп делящихся клеток, подчас буквально тают на глазах под влиянием химиотерапии, и лечение может оказаться эффективным.

Среди опухолевых клеток особого внимания заслуживают сравнительно небольшая часть клеток, которые можно охарактеризовать, как опухолевые стволовые клетки (tumor stem cells). Они способны длительное время существовать в организме вне митотического цикла, в периоде относительного покоя и называются еще покоящиеся (G0), клоногенные клетки.

Однако, под влиянием каких-либо стимулов, эти клетки могут выходить из стагнированного состояния, вступать в клеточный цикл и неограниченно делиться, пополняя пуп пролиферирующих клеток, потомство которых расселяется и колонизирует новые участки тканей.

Уровень воспроизведения опухолевых клеток и клеточные потери. Во взрослом организме количество клеток постоянно, так как количество новообразованных и утратившихся тонко и надежно сбалансировано. При развитии опухолей происходит нарушение этого баланса.

Однако по мере увеличения размеров опухоли темп роста снижается, клеточная пролиферация замедляется, клеточные потери увеличиваются вследствие иммунного воздействия и недостаточного кровоснабжения. При этом доминирующий фактор клеточных потерь — ишемический некроз.

Основными причинами возникновения очагов некроза являются уменьшение по мере роста функционирующей сосудистой сети на единицу объема опухоли и сосудистый стаз. Поэтому доля некротизированных клеток по мере увеличения размеров опухоли всегда увеличивается.

Таким образом, темп роста злокачественных новообразований определяется в основном величиной фракции роста (пулом пропиферирующих клеток) и показателем преобладания воспроизведения клеток над их потерей. В некоторых случаях, особенно с относительно большой фракцией роста, это преобладание велико и приводит к быстрому увеличению массы опухоли, а в других случаях оно весьма незначительно.

Так, в карциномах желудочно-кишечного тракта воспроизведение клеток превышает их потерю примерно лишь на 10% и они имеют тенденцию к гораздо более медленному росту.

Инфильтративный рост опухолей

Инфильтративный (инвазивный) рост (от лат. infiltratio — проникновение) заключается в прямом проникновении (прорастании) опухолевых клеток в окружающие ткани и является одним из основных свойств злокачественности.

В отличие от злокачественных, для доброкачественных опухолей характерен экспансивный рост, т.е. при росте они сдавливают и раздвигают (отодвигают) окружающие нормальные ткани.

При этом сдавленные опухолью элементы окружающей ткани атрофируются, но их количество нарастает и образует вокруг опухоли подобие капсулы (псевдокапсула), В тоже время и некоторые злокачественные опухоли (рак почки, околощитовидной железы, фибросаркома) также растут экспансивно.

Артерии обычно не подвергаются инфильтрирующему росту, так как имеющиеся в их стенке эластин и коллагеновые волокна оказывают значительное сопротивление опухолевым клеткам. Высказывается предположение, что резистентности артерий способствует и высокое внутрисосудистое давление.

Понятно, что вследствие инвазивного роста опухоли прорастают в окружающие анатомические структуры и органы и вызывают нарушения соответствующих функций. Именно эти патогенетические особенности злокачественного роста лежат в основе развития вторичных симптомов и клинических феноменов новообразований.

Кроме того, инвазивный рост является обязательным компонентом метастатического каскада: диссеминации опухолевых клеток по организму предшествует их инвазия из первичного очага в окружающие ткани.

Макроскопические формы рака зависят от того, в каком направлении происходит распространение опухолевой массы: в толщу органа (эндофитная) или за его пределы в виде выбухающего узла (экзофитная) (рис. 6.3).



Рис. 6.3. Основные клинико-морфологические формы роста опухолей.

Экзофитная форма — новообразование имеет вид узла, который выступает в просвет полого органа, или распространяется в толще паренхиматозного, или выступает над поверхностью тела и довольно четко отграничен от здоровых тканей. При этом граница опухоли от видимого ее края составляет около 1 см. Независимо от формы роста раковая опухоль характеризуется склонностью к распаду и изъязвлению, что объясняется особенностями ее кровоснабжения.

Экзофитные опухопи при распаде приобретают вид блюдца — язвы с выступающими, подрытыми в виде валика краями. Такие опухоли называют блюдцеобразными. Экзофитные опухоли в паренхиматозных органах представляют собой округлые узлы, при наружном осмотре они обычно не видны.

При длительном росте из-за особенностей кровоснабжения в центре опухолей происходит распад. Такие формы экзофитных опухолей паренхиматозных органов получили название полостных. По характеру происходящих процессов они аналогичны блюдцеобразным ракам полых органов, но по внешнему виду довольно далеки от них.

Эндофитная форма — раковые клетки распространяются преимущественно в пределах стенки органа. В этих случаях стенка или сам орган становятся толще и плотнее, границы опухоли четко не определяются, а микроскопически от видимого края опухоли распространяется приблизительно на 6 см.

Такой характер роста называют инфильтративным, а опухоль — эндофитным, или инфильтративным раком. Инфильтративный рост новообразования в паренхиматозных органах встречается редко и такая форма опухоли называется диффузной.

Обычно такие опухоли выделяют в качестве особых разновидностей, например в легком — перибронхиальная разветвленная и пневмониелодобная формы, в молочной железе — инфильтративно-отечная, маститоподобная и рожистоподобная формы, в печени — инфильтративная, рак-цирроз и т.д.

Инфильтративно рак протекает более злокачественно, отличается быстрым течением, ранним и бурным метастазированием и плохим прогнозом. При распаде эндофитного рака валикообразные края вокруг изъязвления не образуются, а такие опухоли называются язвенно-инфильтративными. Когда наблюдается сочетание экзо- и эндофитного компонентов опухоли, говорят смешанной форме опухолевого роста.

Делению на основные четыре формы рака (экзофитная, блюдцеобразная, инфильтративная и язвенно-инфильтративная) в наибольшей степени соответствуют новообразования желудочно-кишечного тракта. Рак наружных локализаций обычно имеет вид экзофитной или изъязвленной (соответствует блюдцеобразной) опухоли.

Кроме того, вышеназванным формам роста опухолей часто сопутствует так называемый оппозиционный или вовлекающий рост. Он характерен для воспаления, которое часто сопутствует опухолевому процессу, увеличивая объем и размеры опухоли.

Возможность наличия оппозиционного роста необходимо учитывать при планировании специального лечения, а подготовка к операции или лучевой терапии должна включать противовоспалительную и антибактериальную составляющую.

Формирование опухолевого узла из клональных потомков трансформированной клетки — это сложный процесс роста новообразования, на который влияет множество факторов. Среди них ведущими являются: кинетика (динамика) роста опухолевых клеток, опухолевая прогрессия и гетерогенность, а также ангиогенез в опухоли.

Угляница К.Н., Луд Н.Г., Угляница Н.К.

Читайте также: