Препараты из растений в комплексной терапии злокачественных новообразований

ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ ФИТОСБОРА В КОМПЛЕКСНОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ

ГУ НИИ фармакологии ТНЦ СО РАМН (г. Томск),

Ключевые слова: перевиваемые опухоли, циклофосфан, фитосбор.

Ежегодно в мире регистрируется около 500 тысяч пациенток с ди­агнозом рак шейки матки (Р1ПМ), из них в России – более 12 тысяч. Эта патоло­гия занимает 7 место в структуре заболеваемости и смертности от злокачественных новообразований.

1. Чиссов В. И., Дарьялова СЛ. Избранные лекции по клинической онкологии. – М., 2000. – 735 с.

2. Балицкий К. П., Шмалько Ю. П. Стресс и метастазирование злокачественных опухолей. – Л., 1987. – 248 с.

3. Katoh С, Kitajima S., Saga У. et al. Assessment of quantitative dualparameter flow cytometric analysis for the evaluation of testicular toxicity usincj cyclophosphamide– and ethinylestradiol–treated rats //J. Toxicol Sci. – 2002. – Vol. 21. – № 2. – P.87–96.

4.Птушкин В. В. Совершенствование методов поддерживающей терапии при проведении цитостатического лечения // Современная онкология. – 2002. – Т.4. – № 2. – С. 28–30.

5. Софьина З. П., Сыркин А. Б., Голдин А., Кляйн А. Экспериментальная оценка противо­опухолевых препаратов в СССР и США. – М.: Медицина, 1980. – 296 с.

6. Архипов С. А., Юнкер В. М. Изменение интенсивности метастазирования в легкие перевиваемых опухолей мышей в зависимости от величины перевивочной дозы опухолевых клеток // Исследование по индукции и метастазированию опухолей у экспериментальных животных. – Новосибирск, 1984. – С. 14–32.

7. Лакин Г. Ф. Биометрия. – М.: Высшая школа, 1980. – 293 с.

9. Адамян Ц. И., Геворкян Э. С., Миносян СМ. и др. Влияние корня солодки голой на показатели периферической крови в динамике вибрационного воздействия //Бюлл. эксперим. биол. и медицины. – 2005. – Т. 140. – № 8. – С.164–168.

10. Архипов С. А., Юнкер В. М. Изменение интенсивности метастазирования в легкие перевиваемых опухолей мышей в зависимости от величины перевивочной дозы опухолевых клеток // Исследование по индукции и метастазированию опухолей у экспериментальных животных. – Новосибирск, 1984.–С.14–32.

11. Балицкий К. П., Воронцова А. Л. Лекарственные растения и рак. – Киев, 1982. – 376 с.

12. Бардычи М. С, Цыб А. Ф. Местные лучевые повреждения. – Москва, – Медицина, 1985. – С. 203–214.

13. Боровская Т. Г., Фомина Т. И., Яременко К. В. Снижение токсического действия рубомицина на тонкую кишку мышей с перевиваемой опухолью с помощью экстракта родиолы //Антибиотики и химиотерапия. – 1988. – № 8. – С. 615–616.

14. Буторин И. Ю. Радиомодифицирующая активность экстракта корня солодки при радиотерапии экспериментальных злокачественных опухолей: Дис. . канд. мед. наук. – Томск, 2001. – 145 с.

15. Гольдберг Е. Д., Зуева Е. П. Препараты из лекарственных растений в комплексной терапии злокачественных новообразований. – Томск: Изд-во ТГУ, 2000. – 129 с.

16. Горяев М. И., Шарипова Ф. С. Растения, обладающие противоопухолевой активностью. – Алма-Ата, 1983. – 174 с.

17. Жданов В. В., Любавина П. А., Кириенкова Е. В., Дыгай A. M., Гольдберг Е. Д. О механизмах гемостимулирующего эффекта глицирама // Бюлл. экс­перим. биол. и медицины. – 1997. – Т.123. – № 5. – С.555–559.

18. Канн Д. В., Пронин В. И. Урологические осложнения при лечении онкоза­болеваний органов таза. – М: Медицина, 1988. – С. l11–140.

19. Киселева Е. С., Голдобенко Г. В., Канаев СВ. Руководство. Лучевая тера­пия злокачественных опухолей. – М: Медицина, 1996, – C. 439.

21. Павлов А. С, Костромина В. Н. Рак шейки матки (лучевая терапия). – М: Медицина, 1983. – C. 154.

22. Павлова СИ., Сергеев А. В., Утешев Б. С Антиоксидантные свойства экстракта корня солодки на фоне лечения цитостатиками экспериментальных опухолей // Российский биотерапевтический журнал. – 2004. – № 2. – С.29.

23. Разина Т. Г., Зуева Е. П., Амосова Е. Н. Роль биологически активных ве­ществ лекарственных растений в повышении эффективности цитостатической терапии перевиваемых опухолей // Бюлл. эксперим. биол. и медицины, 2005. – Прил. 1. – С. 35–41.

25. Соколов С. Я. Фитотерапия и фитофармакология (руководство для вра­чей). – М., 2000. – 970 с.

26. Яременко К. В. Природные средства против рака. – СПб, 2001. – 160 с.




Рис. 3. Желудок: а – злокачественная опухоль; б – язва; в – фиброз

При обследовании больных компьютерной томограммой паренхиматозных органов (печень, легкие, почки, головной мозг и т. д.), пораженных опухолью, на срезах процесс замещения ткани злокачественного новообразования фиброзом выглядит так:




Рис. 4. Печень: а – злокачественная опухоль; б – язва; в – фиброз


Рис. 5. Пораженный орган: 1 – орган; 2 – опухоль; 3 – поврежденный опухолью тонкий слой ткани; 4 – фиброз после распада опухоли и тонкого слоя ткани, прилегающей к опухоли.

Существует достаточно много видов злокачественных опухолей, каждый из которых развивается по-своему. Так, например, недифференцированный и плоскоклеточный рак, а также меланома развивается очень быстро, быстро дают метастазы в близлежащие и отдаленные ткани и органы. Наиболее часто встречаются аденокарциномы (опухоли из железистой ткани), саркомы мягких тканей (опухоли преимущественно из соединительной ткани). Эти виды опухолей развиваются в большинстве случаев медленно. Метастазирование при таких злокачественных процессах происходит в основном в случае достижения ими больших размеров.

^ Профилактика рака и других злокачественных новообразований

Больная М. (1931 г. р., г. Тольятти).

Больная У. (1936 г. р., г. Тольятти).

На основании исследования МРТ от 16.07.2002 ей был поставлен диагноз — Вторичная злокачественная опухоль головного мозга в области правой лобной доли размером 19,5х20,5 мм с одиночными метастазами в предцентральную долевую извилину справа, T2 N1 M0. В 1998 г. больной была произведена операция в области левой молочной железы (мамэктомия) в связи с аденокарциномы

Больной М. (1930 г. р., г. Тольятти).

Атлас лекарственных растений СССР. М., 1962.

Ядовитые и вредные растения Тюменской области. Научные труды ОСХИ. Омск, 1972.

1 Струков А. И. Патологическая анатомия. М., 1993. С. 165-166.

Препараты подгрупп исключены. Включить

Описание

Основными средствами этой группы являются винбластин, винкристин, винорелбин, доцетаксел, иринотекан, паклитаксел, тенипозид, топотекан, этопозид и др.

Согласно классификации Д.А. Харкевича, противоопухолевые средства растительного происхождения могут быть представлены следующими группами:

1. Алкалоиды барвинка розового — винбластин, винкристин.

2. Алкалоиды тисового дерева (таксаны) — паклитаксел, доцетаксел.

3. Подофиллотоксины, выделяемые из подофилла щитовидного,- этопозид, тенипозид.

4. Алкалоиды безвременника великолепного — демекольцин (колхамин), колхицин.

Большинство алкалоидов являются фазоспецифичными противоопухолевыми средствами, т.е. эффективны в определенных фазах клеточного цикла.

Алкалоиды можно разделить на две группы по точке приложения действия:

- действующие на микротрубочки клетки (колхицин, винкаалкалоиды, таксаны);

- ингибиторы топоизомераз (этопозид, тенипозид, иринотекан, топотекан).

Винкаалкалоиды — структурно родственные вещества, в химической структуре которых присутствуют две полициклические единицы — виндолин и катарантин. К винкаалкалоидам относятся винбластин и винкристин — алкалоиды, выделенные из растения барвинок розовый (Vinca rosea L.), а также виндезин и винорелбин — полусинтетические производные винбластина. Винорелбин отличается по структуре от других алкалоидов барвинка наличием 8-членного кольца катарантина (вместо 9-членного). Противоопухолевое действие этих алкалоидов обусловлено влиянием на клетки в М-фазе клеточного цикла (фаза митоза).

При нормальном (правильном) течении митоза в стадии профазы начинается формирование ахроматинового веретена, которое завершается в стадии метафазы. К концу клеточного деления веретено распадается (митотическое веретено образуется при каждом делении эукариотической клетки и регулирует ориентацию и распределение хромосом в двух дочерних клетках). В построении нитей веретена деления (микротрубочек) участвует цитоплазматический глобулярный белок тубулин.

Тубулин представляет собой димерный белок, состоящий из двух сходных, но не идентичных субъединиц — альфа-тубулин и бета-тубулин. Обе субъединицы имеют молекулярную массу около 50кД каждая (53 кД и 55 кД) и несколько различаются по изоэлектрической точке. При определенных условиях, в зависимости от потребностей клетки димеры тубулина полимеризуются и образуют линейные цепочки, состоящие из чередующихся молекул альфа-тубулина и бета-тубулина (протофиламенты), из которых формируются микротрубочки.

Микротрубочки составляют основу митотического аппарата (митотическое веретено) в период деления клетки, а также являются важным компонентом цитоскелета клетки. Они необходимы для осуществления многих клеточных функций в интерфазе, в т.ч. для поддержания пространственной формы клеток, внутриклеточного транспорта органелл. В нейронах пучки микротрубочек участвуют в передаче нервных импульсов.

Каждая микротрубочка — это цилиндр с наружным диаметром около 24 нм и внутренним каналом около 15 нм в диаметре, длина микротрубочки — несколько микрон. Стенки построены из 13 протофиламентов, расположенных в виде спирали вокруг центральной полости. Микротрубочки представляют собой динамические полярные структуры с (+)- и (-)-концами. Как полимеризация, так и деполимеризация тубулина происходит на концах микротрубочек, при этом наибольшие изменения происходят на (+)-конце.

Антимитотическое действие винкаалкалоидов опосредовано преимущественно действием на микротрубочки: связываясь с молекулами тубулина микротрубочек (благодаря выраженному сродству), они препятствуют полимеризации этого белка, тормозят образование веретена деления (сборку микротрубочек) и останавливают митоз на стадии метафазы. Винкаалкалоиды могут также изменять метаболизм аминокислот, цАМФ , глютатиона, активность кальмодулинзависимой Ca 2+ транспортной АТФазы, клеточное дыхание, биосинтез нуклеиновых кислот и липидов.

Считают, что в механизме действия разных алкалоидов барвинка имеются некоторые отличия, что может быть обусловлено различиями в их химической структуре, взаимодействием с разными участками молекулы тубулина и различным взаимодействием с белками, ассоциированными с микротрубочками. Эти белки могут изменять характер взаимодействия алкалоидов с тубулином микротубул, что в результате также определяет некоторые нюансы в действии разных алкалоидов. Так, в условиях in vitro , винбластин, винкристин и винорелбин обладают примерно сходной активностью в отношении сборки тубулина в микротубулы, однако винорелбин не оказывает специфического действия в отношении индукции образования спиралей.

При экспериментальном сравнительном исследовании действия винбластина, винкристина и винорелбина на микротрубочки митотического веретена и микротрубочки аксонов у эмбрионов мышей на ранней стадии развития нейронов было показано, что винорелбин более избирательно действует на микротрубочки митотического веретена.

Природные винкаалкалоиды (винкристин, винбластин) применяют для лечения быстро пролиферирующих новообразований. Один из широко используемых винкаалкалоидов — винкристин применяют в основном в комбинированной химиотерапии острого лейкоза, лимфогранулематоза, а также других опухолевых заболеваний (вводят в/в 1 раз в неделю). Нейротоксическое действие винкристина может проявляться нарушением нервно-мышечной передачи, неврологическими осложнениями, в т.ч. парестезией, двигательными расстройствами, выпадением сухожильных рефлексов, возможен парез кишечника с возникновением запоров, вплоть до паралитического илеуса и др.

В отличие от винкристина, другой алкалоид барвинка — винбластин, является менее нейротоксичным лекарственным средством, но вызывает миелосупрессию, имеет выраженный раздражающий эффект с риском развития флебита, некроза (при экстравазальном попадании). Как и винкристин, винбластин применяется в комплексной терапии ряда опухолевых заболеваний, включая болезнь Ходжкина, лимфо- и ретикулосаркомы.

К алкалоидам безвременника великолепного (Colchicum Speciosum Stev.) семейства лилейных (Liliaceae) относятся демекольцин (колхамин) и близкий к нему по строению колхицин, содержащиеся в клубнелуковицах растения.

В средние века настой семян и клубней безвременника применяли в качестве средства от подагры, ревматизма, невралгии. В настоящее время демекольцин и колхицин применяются ограниченно.

Оба алкалоида обладают антимитотической активностью. Механизм действия колхицина обусловлен в первую очередь тем что, связываясь с тубулином, он приводит к дезагрегации митотического аппарата и вызывает т.н. К-митоз (колхициновый митоз) — клеточное деление нарушается на стадии метафазы и последующей анафазы, при этом хромосомы не могут разойтись к полюсам клетки, в результате образуются полиплоидные клетки. Колхицин широко используется в экспериментальных исследованиях в качестве мутагена, а также для получения полиплоидных форм растений.

Демекольцин, являющийся в 7–8 раз менее токсичным, чем колхицин, применяют в основном в качестве наружного средства (в виде мази) при опухолях кожи (ингибирует рост опухолевой ткани, при непосредственном контакте вызывает гибель опухолевых клеток). Колхицин используют для купирования и предупреждения приступов подагры. Колхицин, наряду с антимитотической активностью, обладает способностью препятствовать образованию амилоидных фибрилл и блокировать амилоидоз, оказывает урикозурическое действие, препятствует развитию воспалительного процесса (тормозит митотическое деление гранулоцитов и других подвижных клеток, уменьшает их миграцию к очагу воспаления). Назначают колхицин при подагре, главным образом, при неэффективности НПВС или противопоказаниях к ним.

К средствам, антимитотическая активность которых преимущественно обусловлена действием на микротрубочки клеток, относят, кроме винкаалкалоидов и алкалоидов безвременника великолепного, новую группу алкалоидов — таксаны.

Таксаны — химиотерапевтические средства, получившие широкое распространение в клинической практике в 1990-е гг.

Паклитаксел — первое таксановое производное с противоопухолевой активностью, был выделен в 1967 г. из коры тиса тихоокеанского (Taxus brevifolia), в 1971 г. была расшифрована его химическая структура (является дитерпеноидным таксаном). В настоящее время паклитаксел получают также полусинтетическим и синтетическим путем.

Доцетаксел, близкий к паклитакселу по структуре и механизму действия, получают путем химического синтеза из природного сырья — игл тиса европейского (Taxus baccata).

Таксаны относятся к классу препаратов, действующих на микротрубочки. В отличие от винкаалкалоидов, тормозящих образование митозного веретена, таксаны, связываясь со свободным тубулином, повышают скорость и степень его полимеризации, стимулируют сборку микротрубочек, стабилизируют сформировавшиеся микротрубочки, препятствуют деполимеризации тубулина и распаду микротрубочек. Таксаны нарушают функционирование клетки при митозе (М-фаза) и в интерфазе.

Образование чрезмерного количества микротрубочек и их стабилизация приводят к ингибированию динамической реорганизации сети микротрубочек, что в конечном итоге ведет к нарушению процесса формирования митотического веретена и ингибированию клеточного цикла в G2 и М-фазах. Изменение функционирования клетки в интерфазе, в т.ч. нарушение внутриклеточного транспорта, передачи трансмембранных сигналов и пр. также является следствием нарушения микротубулярной сети.

Паклитаксел и доцетаксел имеют сходный механизм действия. Однако различия в химической структуре определяют некоторые нюансы в механизме действия этих веществ, обнаруженные в эксперименте. Например, доцетаксел обладает более выраженным эффектом в отношении активирования полимеризации тубулина и торможения его деполимеризации (примерно в два раза). При действии на клетку паклитаксела характерны некоторые изменения в строении микротрубочек, не обнаруженные при действии доцетаксела. Так, в экспериментальных исследованиях показано, что образовавшиеся в присутствии паклитаксела микротрубочки содержат только 12 протофиламентов (вместо 13 в норме) и имеют диаметр 22 нМ (в отличие от 24 в норме).

Кроме того, паклитаксел индуцирует аномальное расположение микротрубочек в виде пучков на протяжении всего клеточного цикла и образование множественных звездчатых сгущений (астеров) во время митоза.

Механизмы действия разных препаратов, влияющих на микротрубочки, остаются до конца не понятыми, несмотря на большое количество накопленной информации. Установлено, что участки связывания с тубулином различны для природных винкаалкалоидов, винорелбина, колхицина, таксанов. Так, в экспериментальных исследованиях паклитаксела показано, что он преимущественно связывается с бета-субъединицей тубулина, при этом его способность связываться с микротрубочками выше, чем у димеров тубулина.

Таксаны эффективны при раке молочной железы, яичников, немелкоклеточном раке легких, опухолях головы и шеи и др.

Подофиллотоксины. К противоопухолевым средствам растительного происхождения относят подофиллин (смесь природных веществ, выделяемая из корневищ с корнями подофилла щитовидного (Podophyllum peltatum L.) семейства барбарисовых (Berberidaceae). Подофиллин содержит не менее 40% подофиллотоксина, альфа- и бета-пельтатины. Экстракт из корневищ подофилла издавна применялся в народной медицине как слабительное средств при хронических запорах, в качестве рвотного и противоглистного средства. В дальнейшем была обнаружена его цитостатическая активность, проявляющаяся блокадой митоза на стадии метафазы (по действию напоминает колхицин). Подофиллотоксин применяют местно при лечении папиллом и других новообразований кожи.

В клинической практике широко используются полусинтетические производные подофиллотоксина — эпиподофиллотоксины (этопозид и тенипозид), по механизму действия относящиеся к ингибиторам топоизомераз.

Топоизомеразы — ферменты, непосредственно участвующие в процессе репликации ДНК . Эти ферменты меняют топологическое состояние ДНК : осуществляя кратковременные разрывы и воссоединения участков ДНК , они способствуют быстрому раскручиванию и скручиванию ДНК в процессе репликации. При этом целостность цепей сохраняется.

Ингибиторы топоизомераз, связываясь с комплексом топоизомераза-ДНК, воздействуют на пространственную (топологическую) структуру фермента, снижают его активность и тем самым нарушают процесс репликации ДНК , тормозят клеточный цикл, задерживая пролиферацию клеток.

Ингибиторы топоизомераз оказывают фазоспецифичное цитотоксическое действие (в период S и G2 фазы клеточного цикла).

Этопозид и тенипозид являются ингибиторами топоизомеразы II.

Камптотецины — полусинтетические производные алкалоида камптотецина, выделенного из стеблей кустарника Camptotheca acuminata, представлены иринотеканом и топотеканом. В соответствии с механизмом действия они относятся к группе ингибиторов топоизомераз. В отличие от эпиподофиллотоксинов, камптотецины являются ингибиторами топоизомеразы I. В настоящее время иринотекан является препаратом первой линии для лечения рака толстой кишки. Топотекан широко применяется при лечении рака легкого и яичников.


Противоопухолевые препараты пугают онкологических пациентов непредсказуемостью позитивного и частого негативного действия. Большинство пациентов предпочло бы остановиться на хирургическом лечении или облучении, но эти строго локальные методы не всегда технически возможны. На все опухолевые очаги системно удается воздействовать только лекарственными препаратами, поскольку они проникают всюду, где есть кровь вне зависимости от способа введения.

  • Что такое противоопухолевые препараты и как они работают?
  • Классификация и виды противоопухолевых средств
  • Алкилирующие средства
  • Противоопухолевые препараты растительного происхождения
  • Противораковые препараты нового поколения
  • Препараты на гормональной основе
  • Побочные явления

Что такое противоопухолевые препараты и как они работают?

Все убивающие злокачественные клетки препараты можно называть противоопухолевыми, не смотря на существенную разнородность лекарственных молекул и механизм повреждающего действия. Большинство противоопухолевых препаратов влияет на деление клеток, нарушая структуру их ДНК или веретена, помогающего развести хромосомы в образующиеся дочерние клетки. Вероятно, цитостатики повреждают не только геном, лучше всего изучено их действие образование сшивок между частями одной нити ДНК и двумя параллельными нитями, заплетенными в спираль. У клетки есть способы для восстановления малого повреждения генетического аппарата, но при существенном нарушении она вынуждена уйти в сторону апоптоза — смерти.

Клеточные популяции в опухолевом узле очень разнородны: какие-то клетки только собираются делиться, другие уже вошли в процесс и активно синтезируют две копии структур для дочерней клеточки, некоторые находятся в покое, а часть после завершения жизненной программы устремилась к гибели. Считается, что находящиеся в состоянии покоя клеточные популяции устойчивы к агрессии противоопухолевых лекарств, зато делящиеся и планирующие войти в эту фазу — самые чувствительные к химиопрепаратам. Делящиеся клетки составляют фракцию опухолевого роста, чем она крупнее, тем агрессивнее рак и одновременно более чувствителен к противоопухолевому воздействию.

Классификация и виды противоопухолевых средств

Противоопухолевые лекарства представлены химиотерапевтическими препаратами, то есть цитостатиками, эндокринными или гормональными средствами, таргетными препаратами. Все они различаются механизмом инициации клеточной смерти.

Цитостатики используются с 1946 года и представлены несколькими группами лекарственных средств:

  • алкилирущие получили свое название от химической реакции, реализующей ведущий механизм повреждения — алкилирование, то есть замену атома водорода нуклеиновых кислот нитей ДНК на алкильную группу лекарства с образованием связок и деформацией структуры;
  • антиметаболиты прекращают жизнедеятельность клетки, вмешиваясь в её метаболизм и подменяя собой структурные компоненты нуклеиновых оснований ДНК и РНК или блокируя участвующие в синтезе этих оснований ферменты;
  • противоопухолевые антибиотики тоже формируют ДНК-сшивки, а традиционное для антибактериальных препаратов противовоспалительное и противомикробное действие у них практически равно нулю;
  • препараты растительного происхождения очень разнородны, преимущественный механизм действия — нарушение клеточного деления, общее у них одно — их выделили из растительного сырья, а позже стали синтезировать химическим способом, удешевляя и облегчая процесс производства;
  • различные препараты невозможно было отнести к четырём основным группам ни по одному объединяющему критерию.

Алкилирующие средства

Это самые первые противораковые лекарства, начавшие историю химиотерапии. Ярчайшие представители группы — циклофосфамид, нитрозометилмочевина и производные платины.

Алкилирование противоопухолевыми агентами ДНК приводит к разрывам её цепи и сшиванию с закрученной в параллельную спираль второй нитью, образуемые сшивки не хаотичны — в определенном месте и с конкретным нуклеотидом. В конечном итоге предотвращается репликация, то есть сборка второго комплекта структур для разделения клетки. Принципиально алкилирование возможно в любую фазу клеточного цикла, но особенно активно осуществляется во время синтеза.


Препараты этой группы обладают широким противоопухолевым спектром, используются в терапии рака, в том числе сарком и онкогематологических процессов.

Циклофосфамид, более привычное торговое наименование циклофосфан, применяется более 60 лет в качестве компонента полихимиотерапии, в одиночку используется при злокачественных заболеваниях крови и лимфатической ткани. Вводится разными способами: в таблетках, внутривенно и внутримышечно. Для местного применения бесполезен, потому что активируется исключительно в ткани печени, куда попадает с кровью.

Редкая особенность препарата ифосфамида — наличие антидота уромитексана, защищающего слизистую мочевого пузыря от повреждений.

Первое производное платины — цисплатин было синтезировано в середине XIX века, а в клинику пришло в последней четверти прошлого века. Препарат легко проникает в клетки, потому что его молекула не заряжена ни положительно, ни отрицательно, чем и обусловлена его высокая агрессивность в отношении множества злокачественных процессов. Сегодня применяются уже три поколения платиновых производных, при неизменно высокой активности существенно различаются побочные эффекты.

Препараты нитрозометилмочевины преимущественно используются при злокачественных новообразованиях ЦНС и в онкогематологии.

Противоопухолевые препараты растительного происхождения

Вещества растительного происхождения представлены несколькими группами:

  • винкаалкалоиды выделены из растения барвинок, у всех четырёх лекарственных средств идентичный механизм противоопухолевого действия — нарушение белка тубулина и вследствие этого остановка клеточного митоза;
  • таксаны немногочисленны, первоначально был выделен из коры тихоокеанского тисового кустарника паклитаксел, а через 15 лет уже из игл европейского тиса добыли доцетаксел, сегодня таксаны наполовину синтетические, кроме высокой эффективности они стали первенцами среди слишком дорогих химиопрепаратов;
  • камптотецины добывают из южно-китайского ниссового кустарника, препарат нарушает фермент топоизомеразу, не позволяя раскрутиться суперспирали ДНК, сегодняшние полусинтетические аналоги камптотецина топотекан используются при опухолях ЦНС, иринотекан незаменим в схемах химиотерапии карцином толстой кишки, легкого и яичников;
  • эпиподофиллотоксины — полусинтетические аналоги смолы из корней американской мадрагоры и самый яркий представитель подгруппы — этопозид оказался эффективнее природного аналога.

Противораковые препараты нового поколения


Иммуноонкологические средства способствуют восстановлению естественной иммунной защиты организма, подавленной злокачественной опухолью. Средства отличаются от стандартных иммунных препаратов, аналогом которых были вырабатываемые организмом цитокины — интерферон и интерлейкин. Лекарства, как и таргетные, создаются целенаправленно на основе фундаментальных достижений науки. Иммунотерапия сдвинула с мертвой точки лечение меланомы, устойчивой к цитостатикам, мало чувствительный рак легкого и желудка, почечноклеточную карциному и рак печени.

Препараты на гормональной основе

Эндокринная терапия призвана снизить выработку половых гормонов или не допустить их внутрь опухолевой клетки, дабы исключить стимуляцию роста чувствительного к уровню гормонов злокачественного процесса.

Классификация эндокринных препаратов по механизму действия:

  • центральные, подавляющие выработку гормонов гипофиза, регулирующих синтез эндокринных веществ половыми клетками, и главные представители группы — агонисты ЛГРГ;
  • периферические — снижают функцию половых желез или нарушают в жировой ткани работу фермента ароматазы, отвечающего за трансформацию тестостерона в эстроген — группа ингибиторов ароматазы;
  • клеточные — связывающиеся на мембране с рецептором и не пропускающие гормоны внутрь клетки и по своей сути антигормоны, как антиэстроген тамоксифен.

Применяются гормональные противоопухолевые лекарства при карциномах молочной и предстательной железы, а также некоторых вариантах рака тела матки, несущие на своей клеточной поверхности специальные рецепторы гормонов. Как правило, лечение рассчитано на несколько лет, поскольку реализация противоопухолевого эффекта очень медленная.

Побочные явления

Точка приложения противоопухолевых препаратов — клетка, причём не только опухолевая, но и нормальная, поэтому при противоопухолевой терапии закономерны осложнения. Спектр побочных эффектов каждого препарата изучен, но токсические проявления у отдельного пациента строго индивидуальны и непредсказуемы по интенсивности.

Даже препараты одной подгруппы при общем механизме действия имеют разные точки приложения, к примеру, очень небольшие отличия в строении алкалоидов барвинка винкристин и винбластин обернулись существенными различиями в спектре активности и токсичности, их применяют при разных болезнях. Скопированный с натурального растительного винбластина синтетический аналог виндезин, по биологическому действию и осложнениям больше походит на винкристин. Структурно схожий с природными винкаалкалоидами и полностью синтетический винорелбин по спектру действия и токсичности совсем не походит на натуральные аналоги.

Противоопухолевые лекарства не гарантируют 100% результата, раковые клетки уникальны в способности самовосстановления и скорости воспроизводства популяции.

Искусство химиотерапии — это не только умелый подбор оптимальной комбинации, обещающей максимально возможный результат, но и минимизация программных осложнений лекарственного лечения. В нашей Клинике не только помогают каждому пациенту легче перенести химиотерапию, но заблаговременно по индивидуальной программе, учитывающей все особенности организма, готовят к курсу лечения.

Читайте также: