Что за лечение биологическими вакцинами при онкологии


Вакцина против рака

В онкологии лечение вакцинами предназначено для лечения рака, который уже диагностирован, а не для предотвращения его возникновения. Вакцина от рака воздействует на антигены, связанные с раком, чтобы усилить реакцию иммунной системы на опухолевые клетки пациента. Раковые антигены могут быть белками или молекулами другого типа, найденными на поверхности или внутри раковых клеток, которые могут стимулировать В-клетки-киллеры или Т-клетки, чтобы атаковывать их.

В настоящее время в стадии разработки находятся некоторые вакцины, которые нацелены на целевые антигены, находящиеся на или во многих типах раковых клеток. Эти вакцины против рака проходят апробацию в клинических испытаниях у пациентов с различными видами рака, в том числе рак простаты, рак толстой кишки, легких, молочной железы и рак щитовидной железы.
Другие противоопухолевые вакцины нацелены на антигены, которые являются уникальными для определенного типа рака. Тем не менее, целый ряд вакцин предназначен для борьбы с конкретным антигеном опухоли, чтобы лечить конкретного пациента путем “настройки” на имеющийся тип рака.

Вот, например, вакцина для лечения одного типа рака, которая уже получила одобрение FDA, Sipuleucel-T (сипулейцел-Т). Это тип вакцины, который настраивается под конкретный тип рака. Кстати, в ходе его клинических испытаний, была выявлена способность сипулейцела увеличивать продолжительность жизни мужчин с метастатическим раком (одним из видов) предстательной железы на 4 месяца.

Из-за ограниченной токсичности противораковых вакцин, они также проходят клинические испытания в сочетании с другими формами терапии, такими как гормональная терапия, химиотерапия, лучевая терапия, и целевая терапия.

Что такое БЦЖ терапия?

БЦЖ (BCG или бацилла Кальметта – Герена) была первым вариантом биологической терапии, одобренной FDA. Она ослабляла форму живой бактерии туберкулеза, которая не вызывает заболевания у людей. Впервые БЦЖ была использована медициной как вакцина против туберкулеза. Когда введенная непосредственно в мочевой пузырь с помощью катетера, БЦЖ стимулирует общую иммунную реакцию, которая направлена не только против самой внешней бактерии, но также и против раковых клеток мочевого пузыря.

Как и почему БЦЖ оказывает этот противоопухолевый эффект не очень хорошо понятно, но эффективность лечения хорошо документирована. Примерно 70 процентов пациентов с ранними стадиями рака мочевого пузыря испытывают ремиссию после БЦЖ-терапии.

В настоящее время использование БЦЖ также изучается в лечении других видов рака.

Что дает онколитический вирус в лечении рака?


Некоторые вирусы, такие как реовирус, болезнь Ньюкасла, и вирус эпидемического паротита, естественно онколитические, в то время как другие, в том числе вирус кори, аденовирус, вирус коровьей оспы могут быть адаптированы или модифицированы, чтобы эффективно воспроизводиться только в раковых клетках. Кроме того, онколитические вирусы могут быть изменены с помощью генной инженерии, чтобы предпочтительно инфицировать и воспроизводиться в раковых клеток, которые продуцируют специфический рак, связанный с антигенами, такими как EGFR или HER-2.

Одной из проблем в использовании онколитических вирусов является то, что они сами могут быть уничтожены иммунной системой пациента, прежде чем будут иметь шанс атаковать рак. Исследователи методов вирусной терапии разработали несколько стратегий, чтобы преодолеть эту проблему, например, введение комбинации иммунного подавления препаратов химиотерапии, таких как циклофосфамид вместе с вирусом или “маскировка” вируса внутри защитной оболочки. Но иммунная реакция у пациента может на самом деле иметь преимущества: хотя это может затруднить лечение онколитическим вирусом в момент доставки вируса, но это может улучшить разрушение раковых клеток после заражение вирусом опухолевых клеток.

Нет, онколитический вирус не был одобрен для использования в Соединенных Штатах, хотя H101, модифицированная форма аденовируса, была утверждена в Китае в 2006 году для лечения пациентов с раком головы и шеи. Несколько онколитических вирусов в настоящее время проходят клинические испытания. Исследователи также изучают, могут ли онколитические вирусы быть объединены с другими видами терапии рака или могут ли быть использованы для увеличения чувствительности опухолей пациентов при использовании дополнительной терапии.


  • В Петербурге создали первую в России систему контроля за диагностикой рака

  • Россия не сможет победить рак с серпом и молотом

  • Молчание поневоле. Как помочь, если голос пропал

В НИИ онкологии им. Петрова научились продлевать жизнь пациентам с агрессивными и запущенными формами рака. Им вводят разработанную в институте вакцину, изготовленную из собственных иммунных клеток пациента. Индивидуальная вакцина учит организм видеть опухолевые клетки и бороться с ними.


По словам врачей, новый метод иммунотерапии дендритными клетками дает возможность пациентам с III и IV стадией онкологического заболевания добиться стойкой многолетней ремиссии — более 5 лет. Речь идет о заболеваниях, плохо поддающихся стандартному лечению: меланома кожи, саркома мягких тканей, рак почки, рак кишечника. При стандартном лечении более 90% таких пациентов погибает из-за активного прогрессирования болезни в течение первого года после постановки фатального диагноза.

Уже сегодня врачи НИИ онкологии говорят об эффективности нового метода иммунотерапии. Врачам удалось остановить развитие и взять под контроль болезнь у этих пациентов. По словам медиков, хорошие результаты получены у целой группы пациентов, которые начали лечиться в институте 5 лет назад и раньше. Некоторые из них получают вакцину раз в полгода, а некоторые уже перешли только под наблюдение специалистов.

Такая методика применяется для пациентов НИИ как платно, так и бесплатно. К примеру, бесплатно аутологичными дендритно-клеточными вакцинами лечатся дети в рамках программы оказания высокотехнологичной медицинской помощи, а также взрослые с саркомой - в рамках протокола внутренних клинических исследований института. Раньше, до 2014 года, в рамках ВМП такое лечение бесплатно могли получить взрослые пациенты и с другими онкодиагнозами, но сейчас этот вид лечения не подпадает под ВМП и оплачивается россиянами из собственного кармана. Стоимость одного введения препарата - 35 или 55 тысяч рублей - в зависимости от вида вакцины. В итоге первый цикл введения вакцины (4 введения с промежутком 2-3 недели) может обойтись в 140 или 220 тысяч рублей. По данным специалистов, аналогичный курс введения клеточной вакцины в США стоит 93 тысячи долларов — то есть более 6 млн рублей.

Активное внедрение вакцинотерапии в клиническую практику началось в институте с 2014 года. За 2014 – 2015 годы пациенты получили около 400 введений препарата (примерно по 200 введений ежегодно). С начала этого года уже сделано 121 введение вакцины на основе дендритных клеток. В научном отделе онкоиммунологии НИИ в Песочном одновременно проходят разные этапы лечения около 30 человек, среди которых как взрослые, так и дети.

Как рассказывают в НИИ онкологии, клеточная терапия начала развиваться в институте с 1998 года, когда была организована лаборатория онкоиммунологии. Патент на первое детище лаборатории – способ иммунотерапии костно-мозговыми дендритными клетками пациентов с солидными опухолями был зарегистрирован НИИ в 2003 году, спустя 5 лет запатентована аутологичная вакцина на основе костномозговых дендритных клеток в сочетании с фотодинамической терапией, а в 2010 году получено разрешение на применение этой медицинской технологии в клинической практике.


Применение вакцины, изготовленной из собственных опухолевых клеток пациента, модифицированных геном tag7, обеспечило общую 5-летнюю выживаемость 25,1% пациентов и общую 10-летнюю выживаемость 22% пациентов с III-IV стадиями меланомы кожи и рака почки. Ученым также удалось обнаружить, что на эффективность лечения злокачественных новообразований влияет уровень продукции опухолевыми клетками белка MICA, который блокирует рецепторы Т-лимфоцитов и мешает им уничтожать раковые клетки.

К этим результатам пришли специалисты НМИЦ онкологии им. Н.Н. Петрова при оценке эффективности лечения геномодифицированной вакциной, которое пациенты получили в 2001-2014 годах в рамках исследования, инициированного Центром и Институтом биологии гена РАН. Об этом сообщается в статье, опубликованной в журнале Oncologist.

Пациентам с меланомой и раком почки могли предложить только хирургическое лечение, системного лекарственного лечения в адъювантном режиме (послеоперационном, поддерживающем режиме) они не получали, так как стандартная химиотерапия при таких диагнозах малоэффективна.

Группа исследователей из Института биологии гена РАН под руководством академика Георгия Павловича Георгиева во время экспериментальных исследований на мышах обнаружила ген tag7. Его трансфекция в опухолевые клетки замедляла их рост. Иными словами, перенос в опухоль генетической информации, которую несет ген tag7, активировала клетки иммунной системы. Предполагалось, что белок Tag7 принимает участие в передаче сигнала антигенпрезентирующим дендритным клеткам – виду клеток, которые демонстрируют T-лимфоцитам – клеткам-киллерам, мишень для уничтожения.

Исследователям удалось обнаружить аналог гена tag7 в клетках иммунной системы человека. Они предположили, что ген может использоваться в противоопухолевой терапии. Исследования Института биологии гена РАН и стали научной базой для создания вакцины на основе аутологичных опухолевых клеток, модифицированных геном tag7/PGRP-S.

Вакцина изготавливается из клеток опухоли самого пациента, которые берутся из операционного материала.

Образцы опухоли пациентов переносили в культуру, трансфецировали геном tag7, после чего способность опухолевых клеток размножаться уничтожалась с помощью радиации. Трансфецированные опухолевые клетки могут жить в организме пациента около двух месяцев, не давая смертельно опасного потомства, и синтезировать белок Tag7, который привлекает и активирует клетки иммунной системы.

Полученный продукт вводили пациентам подкожно каждые три недели до прогрессирования заболевания или в течение двух лет с момента начала лечения.

С 2001 по 2014 год в исследовании, которое проводилось на базе научного отдела онкоиммунологии НМИЦ онкологии им. Н.Н. Петрова, приняли участие 80 пациентов. Из них 68 с меланомой кожи и 12 с раком почки. У 26 (33%) пациентов установлена III стадия заболевания, у 54 (67%) – IV стадия. В качестве адъювантной терапии вакцину получали 19 больных: 17 с меланомой, 2 с раком почки. В лечебном режиме, то есть после неполного удаления опухоли и уже после обнаружения метастазов – 61 пациент: 51 с меланомой кожи, 10 с раком почки. Никто из них не лечился другими иммунотерапевтическими препаратами и методами.

С 2014 года проводилось наблюдение за пациентами, которое было завершено к 2018 году.

В описанной публикации проведен заключительный анализ отдаленных результатов исследования, которые в первую очередь определяются по общей выживаемости. Общая выживаемость – это процент пациентов с определенным типом и стадией рака, которые не умерли от любых причин в течение определенного периода времени после постановки диагноза.

Выяснилось, что 5-летняя общая выживаемость в совместной группе больных и меланомой, и раком почки составила 25,1%. Различий в общей выживаемости между ними не было. 10-летняя общая выживаемость составила 22% для пациентов с меланомой кожи, 42% – для пациентов с меланомой кожи с благоприятным прогнозом.

Для сравнения, по литературным данным, 10-летняя общая выживаемость больных с меланомой кожи, получавших ипилимумаб (иммуноонкологический препарат, зарегистрированный в России в 2016 году), составила 17%.

Медиана общей выживаемости (время, которое переживают 50% больных) – 6,6 лет в группе благоприятного прогноза и 4,6 мес.– в группе неблагоприятного прогноза. Для больных меланомой кожи III-IV стадии медиана общей выживаемости в группе благоприятного прогноза составила 2,3 года, при этом 31% пациентов прожили более 10 лет. В группе неблагоприятного прогноза медиана общей выживаемости составила всего 0,4 года (около 5 мес.).

В ходе исследования ученые также пытались понять, за счет чего лечение геномодифицированной вакциной было эффективно для одних пациентов и не эффективно для других. Они оценивали свойства опухоли, подавляющие иммунную систему, индивидуальные у каждого пациента.

После сбора данных об общей выживаемости пациентов, получивших лечение геномодифицированной вакциной, и изучения культуры их опухолевых клеток, которая хранилась в банке биологических образцов НМИЦ онкологии им. Н.Н. Петрова, была проведена математическая обработка данных.

Пациентов разделили на две группы: благоприятного прогноза, с достаточным эффектом (остановка прогрессирования, уменьшение или исчезновение опухоли, ремиссия) и неблагоприятного прогноза, с недостаточным эффектом (быстрое прогрессирование или смерть). Затем сравнили их опухолевые клетки. Оказалось, что клетки пациентов с недостаточным эффектом активно продуцировали иммуносупрессирующие факторы. На основании данных о свойствах опухолей ученые построили четыре прогностические модели, базирующиеся на четырех данных об иммуносупрессирующих факторах. Одна из прогностических моделей оказалась наиболее эффективной.

Выяснилось, что прогноз определяется по уровню MICA. Если этот белок избыточно продуцируется опухолевыми клетками, то его молекулы попадают в опухолевое микроокружение, а затем в кровоток, где соединяются с рецепторами на Т-лимфоцитах и NK-клетках (клетках-киллерах) и блокируют их способность уничтожать раковые клетки. Таким образом, от присутствия белка MICA зависела эффективность лечения пациента.

Тем не менее очевидно, что геномодифицированная аутологичная вакцина – это дополнительная возможность продлить жизнь тысячам пациентов с меланомой кожи и раком почки, потому что ни один из применяемых на сегодняшний день лекарственных препаратов не является панацеей, не обладает 100% эффективностью. Вакцина может дать шанс на ремиссию пациентам с исчерпанными возможностями стандартного лечения.


Меланома. Саркома. Рак прямой кишки. Каждый из этих диагнозов звучит как приговор. Традиционные методы лечения не помогают. Девять из десяти больных погибают в первый же год после диагноза. Остановить прогрессирование болезни – значит спасти жизнь. Пусть на время, пусть на 10–15 лет, но всё-таки…

Иммунная система пациента с агрессивной формой рака словно вывешивает белый флаг и в упор не видит опасные для жизни клетки. Но научить её распознавать клетки новообразования и бороться с ними всё-таки возможно.


Лаборатория в составе отделения биотерапии опухолей была создана в НИИ онко­логии имени Н. Н. Петрова в 1998 году. Уже через пять лет учёные получили свой первый патент – на иммунотерапию костномозговыми дендритными клетками больных солидными опухолями. Ещё через пять лет, в 2003 году, запатентована аутологичная вакцина на основе костномозговых дендритных клеток в сочетании с фотодинамической терапией для лечения химиорезистентных диссеминированных солидных опухолей. В 2010 году специалисты НИИ получают разрешение применять своё изобретение в клинической деятельности. В 2014‑м создаётся научный отдел онкоиммунологии.

А если иммунитет очнётся?

Новое – это хорошо забытое старое. Уникальные противоопухолевые вакцины учёные из НИИ онкологии имени Н. Н. Петрова создают в конце XX – начале XXI века. Но мало кто помнит, что ещё в XIX веке медицинская наука обратила внимание на интересную закономерность: пациенты, у которых есть опухоль, заболевают инфекцией и… выздоравливают. Опухоль разрушается!


А почему разрушается опухоль? Впоследствии выяснилось: потому что активируется иммунная система. Она как будто приходит в сознание и начинает видеть не только вирусы или бактерии, но и опухолевые клетки, которые до поры до времени успешно уклонялись от иммунного надзора. Новое направление в медицине начало развиваться, но вскоре изобрели лучевую терапию, а затем химиотерапию. Эти методы стали давать результаты, и об иммунной системе на время забыли.

Но прошло много лет, и стало понятно, что химиотерапия и лучевая терапия – ещё не панацея. Необходимы дополнительные методы лечения, которые восстановят противоопухолевый иммунный ответ. К исследованию клеток иммунной системы вернулись вновь.

Когда опухоль сильнее лимфоцита

Кстати, а почему иммунитет оказывается беспомощным перед опухолевой клеткой? Наш организм похож на общество: наиболее активно и эффективно отстаивают свои права те, у кого они не так уж и нару­шены.

Из-за мутаций и быстрого роста опухоли иммунная система перестаёт узнавать опасные клетки, которые когда-то были родными, а теперь стали чужеродными. Есть даже теория, что опухолевым клеткам помогают… нормальные, здоровые клетки, расположенные по соседству. Они начинают синтезировать факторы роста, благодаря которым развивается новообразование.


Надо успеть

У каждого пациента своя вакцина. Та, которая подействует именно на его опухоль. Для этого учёные тщательно изучают опухолевые клетки, взятые у больного. Измельчив биоматериал с помощью специальной автоматической машины, пытаются полностью охарактеризовать опухоль – выявить все особенности её поведения, все иммуносуппрессирующие факторы, которые она продуцирует. Нет, это совсем не опечатка.

Опухолевые клетки в отличие от многих из нас всеми силами цепляются за жизнь. Не сработал один механизм подавления иммунной системы – она вырабатывает другой. Не сработал другой – создаёт третий. На экране клеточного видеокомпьютера видно, как стремительно делятся клетки рака толстой кишки. Специальные ножи лабораторной автоматической машины, раскрошившие опухоль на отдельные клетки, новообразованию, кажется, нипочём.


Чтобы успеть, необходимо приготовить вакцинный препарат и ввести больному человеку его первую инъекцию. На создание препарата требуется десять дней – если процесс пройдёт удачно с первой же попытки.

За два первых месяца лечения пациент получит вакцину четырежды. В препарате будут активированные дендритные клетки, которые научат лимфоциты распознавать опухоль. Так стартует иммунный ответ.

Как рождается вакцина

Противоопухолевая вакцина создаётся из собственных клеток иммунной системы больного. Со стороны начало работы очень похоже на обычный анализ крови из вены. В биоматериале учёные по специальным методикам выделят предшественников периферических дендритных клеток – моноциты. А потом начнётся самое сложное. Моноциты необходимо дифференцировать в дендритные клетки. Для этого нужны специальные факторы роста клеток человека (никак не факторы роста для экспериментальных животных), в частности, интерлейкин‑4, гранулоцитарно-макрофагальный колониестимулирующий фактор и особая бессывороточная питательная среда (без ксеногенных факторов лабораторных животных) для получения индивидуальной вакцины человека. В такие условия моноциты помещаются на десять дней. Через неделю их забирают на анализ – проточную цитометрию. Если процесс прошёл правильно, лаборатория обнаружит в материале предшественников – незрелые дендритные клетки. Если же нет, придётся начинать всё сначала. И дай бог успеть вовремя. Так бывает у начинающих учёных без опыта работы, наличия импортных ростовых факторов и специальной дендритноклеточной питательной среды.


Созревшая дендритная клетка, уже представляющая частицы опухоли на своей поверхности, становится основным компонентом противоопухолевой вакцины.


Надо просто любить эти клеточки…

Приготовление вакцинного препарата – процесс не только и не столько химический. Если не любить отдельные живые клетки, если не относиться к ним бережно и заботливо, как к маленьким детям, лекарство не получится. И пациент не выздоровеет.


Доктор медицинских наук Ирина Александровна Балдуева, разрабатывающая противоопухолевые вакцины в НИИ онкологии им. Н. Н. Петрова с 1998 года, замечает: важен не только настрой больного на выздоровление, но и настрой специалиста, который создаёт вакцинный препарат. И пусть это кажется странным, но клетки иммунной системы получаются активными и жизнеспособными только тогда, когда к ним относятся с особой любовью.

Одиночество опасно для жизни

Наши клетки – это мы сами в миниатюре. Сегодня в науке уже известно: когда человек в депрессии, по-другому работает не только мозг, но и все без исключения органы и системы. Возможности нашего организма безграничны – и многое вопреки всем достижениям медицинской науки зависит от того, какой приказ отдаст подсознание.

Другой случай из практики врачей НИИ онкологии им. Н. Н. Петрова. На сей раз печальный. Молодую женщину спасти не удалось. А всё началось с того, что во время медового месяца её муж случайно задел наручными часами родинку у неё на спине. На месте содранной родинки началось кровотечение. Несомненно, кровотечение остановили. Но вскоре развилась агрессивная форма меланомы. Далее было всё очень банально – пациентку бросил муж, ставший невольным виновником заболевания. Это подкосило женщину ещё больше. Не помогли ни поддержка родителей, ни усилия врачей. Красивая и очень молодая женщина с онкологическим диагнозом твёрдо решила, что жить ей незачем.


На стенах кабинета Ирины Александровны Балдуевой – прекрасные картины. Многие из них создал её пациент – художник, капитан 2-го ранга в отставке. Несмотря на ампутированную руку, Борис Матвеевич пишет новые пейзажи, руководит Фондом культуры и учит рисованию маленьких детей из неполных семей. Денег за уроки он не берёт.


Биологическая терапия – это лечение, которое оказывает действие на процессы в клетках. Существует несколько типов такой терапии:

  1. Блокирует деление и дальнейший рост злокачественных клеток.
  2. Находит раковые клетки и уничтожает их.
  3. Воздействует на иммунную систему, стимулируя ее атаковать злокачественные клетки.

Есть несколько названий биологической терапии:

  1. Модификаторы биологических реакций.
  2. Биологические агенты.
  3. Таргетная терапия.
  4. Иммунотерапия.

Будет ли рекомендована биологическая терапия, зависит от типа злокачественной опухоли, стадии болезни, примененных методов лечения. Многие типы биологической терапии все еще являются экспериментальными. Такое лечение не подходит для всех видов рака. Но в некоторых случаях биологическая терапия может быть лучшим вариантом.

Иммунотерапия – один из видов биологической терапии. Она использует вещества, вырабатываемые иммунной системой организма. Они помогают ему бороться с инфекциями и заболеваниями. Другие виды биологической терапии используют вещества, которые также имеют природную основу, но не являются частью иммунитета.

Биологические методы лечения могут быть довольно запутанными. Пока не существует простого способа их группировки, которому легко следовать. Некоторые препараты объединены в соответствии с их влиянием – к примеру, блокируют рост злокачественных клеток. Другие группы включают определенный тип лекарств – моноклональные антитела, нацеленные на специфические белки злокачественных клеток. Есть препараты, которые принадлежат к более чем одной группе. Например, лекарство, которое блокирует развитие патологической клетки, но вместе с тем является моноклональным антителом.

Для пациента важно знать задачу лечения и возможные побочные эффекты.

Виды биологической терапии

Моноклональные антитела – это вид биологической терапии. Моноклональный означает – один тип. Таким образом, каждое моноклональное антитело – это множество копий одного типа антитела. Их изготавливают в условиях лаборатории.

Антитела распознают и присоединяются к специфическим белкам, которые производят клетки. Каждое моноклональное антитело идентифицирует только один конкретный белок. Они работают по-разному в зависимости от белка, на который нацелены. Их создают для работы с различными типами рака.

В настоящее время многие моноклональные антитела доступны для лечения злокачественных опухолей, многие находятся на стадии проверки в условиях клинических испытаний. Для этих препаратов характеры разные побочные эффекты.

Моноклональные антитела действуют по-разному, некоторые из них более чем одним способом.

Запуск иммунной системы

Определенные антитела стимулируют иммунную систему атаковать и уничтожать раковые клетки. Несмотря на то, что злокачественные клетки являются аномальными, они развиваются из здоровых, таким образом, иммунной системе может быть сложно распознать их. Некоторые антитела просто присоединяются к раковым клеткам, облегчая работу иммунитета.

Блокировка молекул, останавливающих работу иммунитета

Также их называют ингибиторами контрольно-пропускного пункта. Иммунная система использует специфические молекулы, которые предотвращают разрушение здоровых клеток. Их называют контрольно-пропускным пунктом. Некоторые злокачественные клетки создают такие молекулы, они деактивируют иммунную систему в виде Т-клеток, атакующих раковые клетки. Препараты, блокирующие такие молекулы, называют ингибиторами контрольно-пропускного пункта. Они представляют собой тип иммунотерапии в онкологии и включают препараты, блокирующие CTLA-4, PD-1 and PD-L1.

Блокировка сигналов, сообщающих раковым клеткам о делении

Злокачественные клетки часто создают в большом количестве молекулы под названием рецепторы факторов роста. Они находятся на поверхности клеток и посылают сигналы, которые помогают им выживать и делиться. Некоторые моноклональные антитела препятствуют работе рецепторов факторов роста, блокируя сигнал или сам рецептор. Поэтому злокачественная клетка не получает больше сигнал, в котором нуждается.

К некоторым моноклональным антителам присоединяются химиопрепараты или радиация. Антитело находит раковую клетку и доставляет к ней непосредственно препарат или излучение.

Все моноклональные антитела в названии имеют 'mab' (monoclonal antibodies):

  • Трастузумаб (Герцептин)
  • Бевацизумаб (Авастин)
  • Ритуксимаб (Мабтера)

Лечение, как правило, осуществляется внутривенно, через капельницу. Частота и количество процедур зависит от типа моноклонального антитела и вида опухоли.

Все препараты имеют нежелательные последствия. Они могут зависеть от типа клеток, на которые нацелены; от того, переносит ли антитело химиопрепарат или излучение.

Наиболее распространенным побочным эффектом всех моноклональных антител является аллергическая реакция на препарат. Она происходит, как правило, в начале терапии. Для предотвращения реакции используется парацетамол или антигистаминный препарат для начала лечения.

Аллергическая реакция может включать следующие симптомы:

  • озноб;
  • лихорадку;
  • сыпь и зуд;
  • тошноту;
  • одышку;
  • головные боли;
  • обмороки;
  • изменение артериального давления.

Вакцины могут помочь защитить организм от инфекций и заболеваний. Но также их применяют для лечения и профилактики некоторых видов рака. Вакцины доставляют небольшое количество белка в организм. В зависимости от вакцины белки могут быть от вирусов, бактерий или раковых клеток, но они не способны вызвать заболевание.

Иммунная система распознает, что белки вакцины отличаются от собственных белков и устанавливает атаку против них. Лейкоциты производят белки – антитела, распознающие определенные белки в вакцине. Антитела присоединяются к белкам и помогают вывести их из организма. Некоторые антитела все же остаются в организме. Если он подвергнется воздействию тех же белков в будущем, он быстро идентифицирует их и начинает создавать нужные антитела.

Существует два типа вакцин от рака – для профилактики и для лечения.

Вакцины от рака для профилактики

В настоящее время существует только одна вакцина, предотвращающая рак. Он может предупредить развитие рака шейки матки, защищая от вируса папилломы человека (ВРЧ). Как известно, этот вирус вызывает изменения, которые могут привести к данному виду онкологии. Если женщина имеет прививку, прежде чем она подвергнется воздействию вируса, риск заболеть раком шейки матки будет очень низкий.

Существует большое количество испытаний по применению вакцин, предотвращающих другие виды рака, но они еще находятся на стадии исследования.

Вакцины от рака для лечения

Данный вид вакцин направлен на обучение иммунной системы распознавать и атаковать злокачественные клетки. Они помогают:

  • остановить дальнейший рост опухоли;
  • предотвратить рецидив;
  • уничтожить любые оставшиеся клетки после применения других методов.

Колониестимулирующие факторы известны также как факторы роста. Эти также вещества производятся организмом, существует их несколько типов. Некоторые из них стимулируют костный мозг создавать определенные типы клеток крови. В настоящее время существует возможность создавать некоторые из них в условиях лаборатории.

При лечении рака врачи могут обращаться к терапии под названием гранулоцитарный колониестимулирующий фактор (Г-КСФ) после химиотерапии, чтобы восстановить уровни клеток крови. Существуют различные типы этих препаратов:

  • Ленограстим (граноцит)
  • Филграстим (Нейпоген, Zarzio, Nivestim, Ratiograstim)
  • Pegfilgrastim или Neulasta – форма филграстима, но продолжительного действия.

Исследователи изучают вопрос о применение некоторых факторов роста как биологической терапии. GM-CSF (гранулоцитарный и макрофагальный колониестимулирующий фактор) – фактор роста, увеличивающий количество некоторых типов лейкоцитов – нейтрофилов и моноцитов. Также он стимулирует дендритные клетки к делению. Эти клетки помогают иммунной системе распознавать и атаковать злокачественные клетки. Таким образом, исследователи применяют GM-CSF наряду с другими видами биологической терапии, чтобы увеличить количество дендритных клеток, а также в качестве вакцины для лечения некоторых видов рака.

Данная терапия проводится в рамках экспериментальных исследований. В ходе испытаний у пациентов увеличилось число дендритных клеток после вакцины. Но пока не известно, влияет ли это на рак. Испытания проводились с участием небольшого числа пациентов, в основном с меланомой.

Интерферон и интерлейкин – это вещества, создаваемые клетками организма для коммуникации друг с другом. Это белки, которые принадлежит к группе химических веществ под названием цитокины.

Интерферон и интерлейкин могут стимулировать работу иммунной системы, поэтому врачами была создана их техногенная версия для лечения рака. По принципу функционирования эти препараты называют иммунотерапией.

Интерферон и интерлейкин работают в нескольких направлениях:

  • вмешиваются в способы деления и распространения рака;
  • стимулируют работу иммунной системы – Т-клеток и других – атаковать злокачественные клетки;
  • стимулируют раковые клетки вырабатывать вещества, которые привлекают к ним клетки иммунной системы.

Показания к применению альфа-интерферона

Врачи используют альфа-интерферон в лечении разных видов злокачественных опухолей:

  • рака почки;
  • меланомы;
  • множественной миеломы;
  • некоторых видов лейкемии.

В организм препарат поступает внутривенно с помощью капельницы, а также подкожно. Частота применения зависит от типа рака. В большинстве случаев интерферон дают 3 раза в неделю, но бывает и ежедневно в виде инъекций.

Показания для интерлейкина

Интерлейкин 2 также называют Алдеслейкин (или IL2 или Пролейкин). Чаще всего его используют для лечения рака почки. В рамках клинических испытаний его задействовали также для других видов онкологии. Для введения в организм используют подкожные инъекции, капельницы. Частота применения зависит от типа злокачественной опухоли.

Некоторые из нежелательных последствий терапии интерфероном и интерлейкином 2 могут включать:

  • усталость;
  • гриппоподобные симптомы;
  • диарею;
  • низкие уровни клеток крови;
  • тошноту;
  • потерю аппетита;
  • интерлейкин может вызывать низкое давление крови.

Гены кодируют сообщения, которые доносят информацию клеткам, как создавать белки. Белки – это молекулы, контролирующие способы поведения клеток. Таким образом, гены решают, как будет выглядеть человек, как будет работать организм. Тело человека обладает тысячами отдельных генов.

Гены состоят из ДНК, которые располагаются в ядре клетки. Ядро – это контрольный центр клетки. Гены, объединяясь по группам, создают хромосомы. Человек наследует половину хромосом от матери, половину – от отца.

Раковые клетки отличаются от здоровых. Они имеют мутации или ошибки в нескольких генах, что приводит их к слишком частому процессу деления и образования опухоли. Гены, которые могут быть повреждены:

  • гены, стимулирующие клетки размножаться (известны как онкогены);
  • гены, останавливающие клеточное деление (гены-супрессоры опухолей);
  • гены, восстанавливающие поврежденные гены.

Многие мутации генов, которые приводят к созданию злокачественных клеток, являются следствием окружающей среды или факторов образа жизни, таких как курение. Но некоторые люди наследуют дефектные гены, повышающие риск определенных видов рака. Наследованные поврежденные гены становятся причиной рака у 2-3 человек из 100.

Генная терапия - это один из видов лечения, который использует гены для терапии заболеваний. Исследователи надеются, что некоторые виды генной терапии смогут вылечить рак.

Внедрение генов в раковые клетки – один из наиболее сложных аспектов в генной терапии. Исследователи работают над поиском новых эффективных способов осуществления этой задачи. Гены обычно доставляются в раковую клетку с помощью носителя или перевозчика, которого также называют вектором. Наиболее распространенные типы носителя, которые используют в генной терапии – вирусы, поскольку они входят в клетку и доставляют генетический материал. Вирусы изменяют так, чтобы они не могли вызывать серьезные заболевания, лишь легкие симптомы.

Измененные вирусы могут быть направлены только на раковые клетки, а не на здоровые. Они только переносят ген в злокачественные клетки.

Исследователи тестируют и другие виды носителей, такие как инактивированные бактерии.

Ученые изучают различные способы применения генной терапии, в том числе:

  • усиление иммунного ответа;
  • повышение эффективности других методов лечения рака;
  • блокировка процессов, защищающих раковые клетки;
  • использование измененных вирусов.

Усиление иммунного ответа

Некоторые виды генной терапии направлены на повышение естественной способности организма атаковать злокачественные клетки. Иммунная система человека обладает клетками, которые распознают и убивают вредные субстанции, способные вызвать заболевания, такие как раковые клетки.

Существует много различных типов иммунных клеток. Некоторые из них производят белки, которые активизируют иммунные клетки уничтожать злокачественные. Другие добавляют гены иммунных клеток, чтобы повысить качество поиска патологических клеток или уничтожить определенные виды рака.

Повышение эффективности других методов лечения рака

Некоторые препараты генной терапии внедряют гены в злокачественные клетки, чтобы сделать их более чувствительными к конкретным процедурам – к химиотерапии или лучевой терапии. Они повышают эффективность других методов лечения.

Генная терапия препарата Pro

Некоторые виды генной терапии доставляют гены в раковые клетки, позволяющие преобразовывать лекарства из неактивной формы в активную. Неактивная форма называется препаратом Pro.

После предоставления носителя, содержащего ген, врач дает пациенту препарат в виде таблетки или капсулы, поступающей в кровоток. Он циркулирует в организме и не наносит вреда здоровым клеткам, однако, достигая раковые, ген активирует препарат и тот уничтожает клетку.

Блокировка процессов, защищающих раковые клетки

Некоторые препараты блокируют процессы, которые используют раковые клетки, чтобы выжить. Например, большая часть клеток в организме запрограммированы умереть, если их ДНК повреждена и восстановлению не подлежит. Такой процесс называется запрограммированной смертью клеток или апоптозом. Но раковым клеткам удается блокировать этот процесс. Некоторые стратегии генной терапии направлены на снятие такой блокировки. Исследователи надеются, что новые виды лечения смогут обеспечить смерть злокачественным клеткам.

Использование измененных вирусов

Определенные вирусы инфицируют и уничтожают клетки. Исследователи работают над способами изменения эти вирусов так, чтобы они были нацелены только на злокачественные клетки, не нанося вреда здоровым. При данном виде лечения не задействуется внедрение генов. Поэтому в истинном смысле слова это не генная терапия.

Один из таких примеров – вирус герпеса. Измененный вирус называют Oncovex. Его изучали в рамках клинических испытаний в лечении метастатической меланомы, рака поджелудочной и рака головы и шеи.

Вопросы, которые можно задать врачу по биологической терапии:

  • Почему предлагается биологическая терапия в конкретном случае?
  • Какой тип биологической терапии будет использоваться?
  • Существуют ли другие варианты лечения для конкретного случая болезни?
  • Будет ли проводиться другое лечение в то же время?
  • Безопасны ли биологические методы терапии?
  • Каковы будут преимущества биологической терапии?
  • Необходима ли госпитализация во время лечения?
  • Сколько займет терапия?
  • Какие побочные эффекты могут быть?
  • Как долго будет длиться побочные эффекты?
  • Будет ли долгосрочные побочные действия?
  • Есть что-нибудь, что может помочь с побочными эффектами?

Читайте также: