Валентность фосфора с хлором


Фосфор расположен в главной подгруппе V группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронная конфигурация фосфора в основном состоянии :


Атом фосфора содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом фосфора может образовывать 3 связи по обменному механизму. Однако, в отличие от азота, за счет вакантной 3d орбитали атом фосфора может переходить в возбужденное энергетическое состояние.

Электронная конфигурация фосфора в возбужденном состоянии:


При этом один электрон из неподеленной электронной пары на 3s-орбитали переходит на переходит на 3d-орбиталь. Для атома фосфора в возбужденном энергетическом состоянии характерна валентность V.

Таким образом, максимальная валентность фосфора в соединениях равна V (в отличие от азота). Также характерная валентность фосфора в соединениях — III.

Степени окисления атома фосфора – от -3 до +5. Характерные степени окисления -3, 0, +1, +3, +5.

Фосфор образует различные простые вещества (аллотропные модификации).

Белый фосфор — это вещество состава P4. Мягкий, бесцветный, ядовитый, имеет характерный чесночный запах. Молекулярная кристаллическая решетка, а следовательно, невысокая температура плавления (44°С), высокая летучесть. Очень реакционно способен, самовоспламеняется на воздухе.



Покрытие бумаги раствором белого фосфора в сероуглероде. Спустя некоторое время, когда сероуглерод испаряется, фосфор воспламеняет бумагу (процесс лег в основу различных фокусов с самовозгоранием или получением огня из ничего):

Белый фосфор можно расплавить в ёмкости с тёплой водой, поскольку он имеет температуру плавления в 44,15 °C.

Красный фосфор – это модификация с атомной кристаллической решеткой . Формула красного фосфора Pn, это полимер со сложной структурой. Твердое вещество без запаха, красно-бурого цвета, не ядовитое. Это гораздо более устойчивая модификация, чем белый фосфор. В темноте не светится. Образуется из белого фосфора при t=250-300 о С без доступа воздуха.



Черный фосфор – то наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Чёрный фосфор — это чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, полностью нерастворимое в воде или органических растворителях.


Известны также такие модификации, как желтый фосфор и металлический фосфор. Желтый фосфор – это неочищенный белый фосфор. При очень высоком давлении фосфор переходит в новую модификацию – металлический фосфор , который очень хорошо проводит электрический ток.


В природе фосфор встречается только в виде соединений. В основном это апатиты (например, Ca3(PO4)2), фосфориты и др. Фосфор входит в состав важнейших биологических соединений —фосфолипидов.

Типичные соединения фосфора:

ортофосфорная кислота H3PO4

Валентностью называется способность элементов присоединять к себе другие элементы.

Т. е. валентность – это число, демонстрирующее количество элементов, которое может притянуть к себе конкретный атом. Определяется числом неспаренных электронов невозбуждённого и возбуждённого атома.

Хлор, является элементом седьмой группы главной подругппы, третьего периода периодической системы химических элементов Менделеева. Атомный номер хлора – 17. Записывается он как Cl от Chlorum. Хлор является активным неметаллом и входит в группу галогенов.

Валентность и степень окисления атомов хлора в его молекуле


Если сравнивать степень окисления с валентностью, то степень окисления является более универсальным понятием. Степень окисления характеризует ряд соединений, таких как ионная связь, химическая или металлическая, однако не зависит от вида химической связи. Степень окисления — это условный заряд на атоме в веществе. Определяют степень окисления исходя из допущения, о том, что соединение состоит исключительно из ионных связей. Степень окисления, в отличии от валентности, встречается не только положительной, но также нулевой, а порой и отрицательной.

Степень окисления численно обозначается тем, в каком состоянии находится атом в соединении. Также её именуют окислительным числом. Определяя которое условно полагают, что в простых ковалентных соединениях значение положительной степени окисления элемента равняется количеству оттянутых от атома связывающих электронных пар, а значение отрицательной степени окисления — числом притянутых электронных пар. Поэтому, определяя степень окисления принято считать, что, соединения состоят только из положительно и отрицательно заряженных ионов.


Степень окисления — это условный заряд атома в соединении, который возник бы, если бы связи в этом соединении были бы ионными, а электроны смещены к наиболее электроотрицательному элементу.

Говоря о хлоре, его валентности и степени окисления в его молекуле, получаются следующие значения:

  • Валентность – 1.
  • Степень окисления — 0

Какова валентность азота фосфора кремния

  • Валентность азота. Азот в таблице Менделеева обозначен буквой N. Он может существ овать в самом разном валентном виде завися от соединения. Встречается даже дробная валентность. Это можно прекрасно посмотреть на примере окисления азота: N2O — одновалентный азот (веселящий газ) NO — двухвалентный. NO2 (диоксид азота, бурый газ). Соединения азота в степени окисления +5 — оксид азота (V) N2O5, азотная кислота и её соли — нитраты, и др.

Тем не менее, валентность самого азота = 3.

  • Фосфор (Р) стоит в 3-м периоде, V группы, основной подгруппы периодической системы Менделеева. Валентность фосфора также может быть разной, всё, как и с любым другим веществом, упирается в то, с каким веществом случиться химическая связь фосфора. Тем не менее валентность самог фосфора бывает III, V.
  • Кремний (Si) – стоит в 3 периоде, IV группе главной подгруппы периодической системы. Валентность – 2, 4.

Валентность хлора в органических соединениях может быть различной, в зависимости, собственно, от соединения.

Основные реакции хлора с органическими веществами:

  • С насыщенными соединениями:

CH3-CH3 + Cl2 → C2H5Cl + HCl

CH2=CH2 + Cl2 → Cl-CH2-CH2-Cl

  • Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl3 или FeCl3):

C6H6 + Cl2 → C6H5Cl + HCl

В невозбужденном состоянии у атома хлора на 3 энергетическом уровне находится 1 неспаренный электрон, таким образом невозбужденный атом хлора может показывать валентность 1.

В возбужденном состоянии — валентность 3.


Зная валентность 1 химического элемента, всегда можно узнать валентность остальных атомов в соединении. Если атомы водорода в любое время одновалентные, то в молекуле хлороводорода HCl валентность атомов хлора также будет равняться одному, ведь атом хлора связан только с атомом водорода и не может образовывать с ним больше 1 связи.

Высшим оксидом является оксид, где элемент проявляет высшую степень окисления.

Cl2O7 — оксид хлора (VII) — ст. окисл. Cl (+7) — высший оксид.

Валентность хлора с металлами, с фосфором, с серебром, с натрием, с водородом, с кислородом, с кальцием, с алюминием, с неметаллами, с железом

Вообще валентность – одна из самых сложных тем в химии, чтобы в этом разобраться, придётся проштудировать немало материала. Не зная элементарных законов и правил химии, никто не сможет понять, что же такое валентность, а уж тем более научиться определять её.

Взаимодействие с металлами:

Хлор непосредственно вступает в реакцию фактически со всеми металлами, однако для реакции с некоторыми необходима влага или нагревание.

Взаимодействие с неметаллами:

C неметаллами (кроме углерода, азота, фтора, кислорода и инертных газов), образует соответствующие хлориды.

В различных соединениях валентность хлора также различается, с металлами (серебро, натрий, железо, алюминий) валентность хлора = 1, с неметаллами имеет различную валентность, но, чаще всего, также 1. В соединениях с водородом валентность хлора = 1.

Вообще CL всегда имеет валентность 1, соединяясь с веществами, исключения составляют вещества с валентностью VII.

Фосфор в таблице менделеева занимает 15 место, в 3 периоде.

Символ P
Номер 15
Атомный вес 30.9737620
Латинское название Phosphorus
Русское название Фосфор
Как самостоятельно построить электронную конфигурацию? Ответ здесь

Электронная схема фосфора

P: 1s 2 2s 2 2p 6 3s 2 3p 3

Короткая запись:
P: [Ne]3s 2 3p 3

Одинаковую электронную конфигурацию имеют атом фосфора и Si -1 , S +1 , Cl +2

Порядок заполнения оболочек атома фосфора (P) электронами: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ - до 6, на ‘d’ - до 10 и на ‘f’ до 14

Фосфор имеет 15 электронов, заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

3 электрона на 3p-подуровне

Степень окисления фосфора

Атомы фосфора в соединениях имеют степени окисления 5, 4, 3, 2, 1, 0, -1, -2, -3.

Степень окисления - это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.

Ионы фосфора

Валентность P

Атомы фосфора в соединениях проявляют валентность V, IV, III, II, I.

Валентность фосфора характеризует способность атома P к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Квантовые числа P

Квантовые числа определяются последним электроном в конфигурации, для атома P эти числа имеют значение N = 3, L = 1, Ml = 1, Ms = ½

Видео заполнения электронной конфигурации (gif):

Результат:

Энергия ионизации

Чем ближе электрон к центру атома - тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации - это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.

Перейти к другим элементам таблицы менделеева

Валентность химических элементов – это способность у атомов хим. элементов образовывать некоторое число химических связей. Принимает значения от 1 до 8 и не может быть равна 0.

Определяется числом электронов атома затраченых на образование хим. связей с другим атомом. Валентность это реальная величина. Обозначается римскими цифрами (I ,II, III, IV, V, VI, VII, VIII).

Валентность химических элементов (Таблица)

Как можно определить валентность в соединениях:

  • Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.
  • Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.
  • Высшая валентность всегда равна № группы.
  • Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.
  • У металлов в подгруппах А таблицы Менделеева, валентность = № группы.
  • У неметаллов обычно две валентности: высшая и низшая.


Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.

Атомный № Химический элемент Символ Валентность химических элементов Примеры соединений
1 Водород / Hydrogen H I HF
2 Гелий / Helium He отсутствует
3 Литий / Lithium Li I Li2O
4 Бериллий / Beryllium Be II BeH2
5 Бор / Boron B III BCl3
6 Углерод / Carbon C IV, II CO2, CH4
7 Азот / Nitrogen N III, IV NH3
8 Кислород / Oxygen O II H2O, BaO
9 Фтор / Fluorine F I HF
10 Неон / Neon Ne отсутствует
11 Натрий / Sodium Na I Na2O
12 Магний / Magnesium Mg II MgCl2
13 Алюминий / Aluminum Al III Al2O3
14 Кремний / Silicon Si IV SiO2, SiCl4
15 Фосфор / Phosphorus P III, V PH3, P2O5
16 Сера / Sulfur S VI, IV, II H2S, SO3
17 Хлор / Chlorine Cl I, III, V, VII HCl, ClF3
18 Аргон / Argon Ar отсутствует
19 Калий / Potassium K I KBr
20 Кальций / Calcium Ca II CaH2
21 Скандий / Scandium Sc III Sc2S3
22 Титан / Titanium Ti II, III, IV Ti2O3, TiH4
23 Ванадий / Vanadium V II, III, IV, V VF5, V2O3
24 Хром / Chromium Cr II, III, VI CrCl2, CrO3
25 Марганец / Manganese Mn II, III, IV, VI, VII Mn2O7, Mn2(SO4)3
26 Железо / Iron Fe II, III FeSO4, FeBr3
27 Кобальт / Cobalt Co II, III CoI2, Co2S3
28 Никель / Nickel Ni II, III, IV NiS, Ni(CO)4
29 Медь / Copper Сu I, II CuS, Cu2O
30 Цинк / Zinc Zn II ZnCl2
31 Галлий / Gallium Ga III Ga(OH)3
32 Германий / Germanium Ge II, IV GeBr4, Ge(OH)2
33 Мышьяк / Arsenic As III, V As2S5, H3AsO4
34 Селен / Selenium Se II, IV, VI, H2SeO3
35 Бром / Bromine Br I, III, V, VII HBrO3
36 Криптон / Krypton Kr VI, IV, II KrF2, BaKrO4
37 Рубидий / Rubidium Rb I RbH
38 Стронций / Strontium Sr II SrSO4
39 Иттрий / Yttrium Y III Y2O3
40 Цирконий / Zirconium Zr II, III, IV ZrI4, ZrCl2
41 Ниобий / Niobium Nb I, II, III, IV, V NbBr5
42 Молибден / Molybdenum Mo II, III, IV, V, VI Mo2O5, MoF6
43 Технеций / Technetium Tc I — VII Tc2S7
44 Рутений / Ruthenium Ru II — VIII RuO4, RuF5, RuBr3
45 Родий / Rhodium Rh I, II, III, IV, V RhS, RhF3
46 Палладий / Palladium Pd I, II, III, IV Pd2S, PdS2
47 Серебро / Silver Ag I, II, III AgO, AgF2, AgNO3
48 Кадмий / Cadmium Cd II CdCl2
49 Индий / Indium In III In2O3
50 Олово / Tin Sn II, IV SnBr4, SnF2
51 Сурьма / Antimony Sb III, IV, V SbF5, SbH3
52 Теллур / Tellurium Te VI, IV, II TeH2, H6TeO6
53 Иод / Iodine I I, III, V, VII HIO3, HI
54 Ксенон / Xenon Xe II, IV, VI, VIII XeF6, XeO4, XeF2
55 Цезий / Cesium Cs I CsCl
56 Барий / Barium Ba II Ba(OH)2
57 Лантан / Lanthanum La III LaH3
58 Церий / Cerium Ce III, IV CeO2 , CeF3
59 Празеодим / Praseodymium Pr III, IV PrF4, PrO2
60 Неодим / Neodymium Nd III Nd2O3
61 Прометий / Promethium Pm III Pm2O3
62 Самарий / Samarium Sm II, III SmO
63 Европий / Europium Eu II, III EuSO4
64 Гадолиний / Gadolinium Gd III GdCl3
65 Тербий / Terbium Tb III, IV TbF4, TbCl3
66 Диспрозий / Dysprosium Dy III Dy2O3
67 Гольмий / Holmium Ho III Ho2O3
68 Эрбий / Erbium Er III Er2O3
69 Тулий / Thulium Tm II, III Tm2O3
70 Иттербий / Ytterbium Yb II, III YO
71 Лютеций / Lutetium Lu III LuF3
72 Гафний / Hafnium Hf II, III, IV HfBr3, HfCl4
73 Тантал / Tantalum Ta I — V TaCl5, TaBr2, TaCl4
74 Вольфрам / Tungsten W II — VI WBr6, Na2WO4
75 Рений / Rhenium Re I — VII Re2S7, Re2O5
76 Осмий / Osmium Os II — VI, VIII OsF8, OsI2, Os2O3
77 Иридий / Iridium Ir I — VI IrS3, IrF4
78 Платина / Platinum Pt I, II, III, IV, V Pt(SO4)3, PtBr4
79 Золото / Gold Au I, II, III AuH, Au2O3, Au2Cl6
80 Ртуть / Mercury Hg II HgF2, HgBr2
81 Талий / Thallium Tl I, III TlCl3, TlF
82 Свинец / Lead Pb II, IV PbS, PbH4
83 Висмут / Bismuth Bi III, V BiF5, Bi2S3
84 Полоний / Polonium Po VI, IV, II PoCl4, PoO3
85 Астат / Astatine At нет данных
86 Радон / Radon Rn отсутствует
87 Франций / Francium Fr I
88 Радий / Radium Ra II RaBr2
89 Актиний / Actinium Ac III AcCl3
90 Торий / Thorium Th II, III, IV ThO2, ThF4
91 Проактиний / Protactinium Pa IV, V PaCl5, PaF4
92 Уран / Uranium U III, IV UF4, UO3
93 Нептуний Np III — VI NpF6, NpCl4
94 Плутоний Pu II, III, IV PuO2, PuF3, PuF4
95 Америций Am III — VI AmF3, AmO2
96 Кюрий Cm III, IV CmO2, Cm2O3
97 Берклий Bk III, IV BkF3, BkO2
98 Калифорний Cf II, III, IV Cf2O3
99 Эйнштейний Es II, III EsF3
100 Фермий Fm II, III
101 Менделевий Md II, III
102 Нобелий No II, III
103 Лоуренсий Lr III
Номер Элемент Символ Валентность химических элементов Пример

Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

  • График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.
  • При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.
  • Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления – условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Степень окисления химических элементов в простых веществах всегда равна нулю.

Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Щелочные металлы, т.е. все металлы IA группы — Li, Na, K, Rb, Cs, Fr +1
Все элементы II группы, кроме ртути: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd +2
Алюминий Al +3
Фтор F -1

Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов: Фторид кислорода —

Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Кислород VI +2 (в OF2)
Фтор VII
Медь I +2
Железо VIII +6 (например K2FeO4)

Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

  • низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

  1. неспаренных электронов
  2. неподеленных электронных пар на орбиталях валентных уровней
  3. пустых электронных орбиталей валентного уровня

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня.

Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II.

Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей.

По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( ) орбиталей валентного уровня.

Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму.

Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Резюмируя информацию по валентным возможностям атома углерода:

  • Для углерода возможны валентности II, III, IV
  • Наиболее распространенная валентность углерода в соединениях IV
  • В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар.

Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( ) предоставляет ее другому атому с вакантной ( ) орбиталью валентного уровня (акцептору). Т.е.

для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии.

Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей.

Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Резюмируя информацию по валентным возможностям атома азота:

  1. Для азота возможны валентности I, II, III и IV
  2. Валентности V у азота не бывает!
  3. В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).
  4. В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4+, азотная кислота и д.р).

Читайте также: