В подгруппе с фтором и хлором


Галогены (от греч. halos — соль и genes — образующий) — элементы главной подгруппы VII группы периодической системы: фтор, хлор, бром, йод, астат.

Общая электронная конфигурация внешнего энергетического уровня — nS 2 nP 5 .

С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства);

Галогены — сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.

Молекулы галогенов состоят из двух атомов.

С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.

Фтор получают электролизом расплава гидрофторида калия KHF2 (разлагается лишь HF):

Анод: 2F — — 2ē → F2

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия:

В лаборатории хлор получают действием различных окислителей на соляную кислоту:

Аналогично получают бром и иод, окисляя НВr, НI или их соли:

Химические свойства F2

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к йоду.

Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты:

Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) — все реакции при этом сильно экзотермические:

При нагревании фтор окисляет все другие галогены (их степень окисления +1):

При облучении фтор реагирует даже с инертными (благородными) газами:

Взаимодействие фтора со сложными веществами также протекает очень энергично:

Химические свойства Сl2

Свободный хлор реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов:

Реакция замещения и присоединения с углеводородами:

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

Обратимо реагирует с водой:

Сl2 + Н2О↔ НСl + НСlO (хлорная вода)

Сl2 + 2NаОН → NаСl + NаСlO + Н2О (на холоде),

ЗСl2 + 6КОН → 5КСl + КClO3 + ЗН2О (при нагревании).

Химические свойства Br2

По химической активности бром занимает промежуточное положение между хлором и иодом. Взаимодействует со многими простыми веществами:

При растворении в растворах щелочей на холоду происходит образование бромида и гипобромита

2NaOH + Br2 =NaBr + NaBrO + H2O

При повышенных температурах (около 100°С) — бромида и бромата:

При реакции брома с растворами иодидов выделяется свободный иод:
Br2+ 2KI = I2+ 2KBr.

С органическими веществами, имеющими двойную или тройную связь. Обесцвечивание бромной воды – качественная реакция на непредельное соединение:
C2H4 + Br2 = C2H4Br2.

Химические свойства I2

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании.

Взаимодействие же йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Но йод способен растворяться в растворах иодидов с образованием комплексных анионов:

Образующийся раствор называется раствором Люголя.

Сероводород H2S, тиосульфат натрия Na2S2O3 и другие восстановители восстанавливают его до I — :

Хлор и другие сильные окислители в водных растворах переводят его в IO3 — :

Адсорбируясь на крахмале, йод окрашивает его в темно-синий цвет- качественная реакция на йод.

Таким образом, химиче­ская активность галогенов последовательно уменьшается от фтора к йоду. Каждый галоген в ряду F — I может вытеснять после­дующий из его соединений с водородом или металлами, т.е. каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов.

Галогены (греч. hals - соль + genes - рождающий) - химические элементы VIIa группы: F, Cl, Br, I, At. Реагируют с большинством других элементов и органических соединений.

Галогены широко распространены в природе. Их химическая активность падает от фтора к астату.


От F к At (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Все галогены относятся к неметаллам, являются сильными окислителями.


Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 5 :

  • F - 2s 2 2p 5
  • Cl - 3s 2 3p 5
  • Br - 4s 2 4p 5
  • I - 5s 2 5p 5
  • At - 6s 2 6p 5

Для галогенов характерны нечетные степени окисления: -1, +1, +3, +5, +7. Это связано с электронной конфигурацией атомов в возбужденном состоянии.


  • NaCl - галит (каменная соль)
  • CaF2 - флюорит, плавиковый шпат
  • NaCl*KCl - сильвинит
  • 3Ca3(PO4)2*CaF2 - фторапатит
  • MgCl2*6H2O - бишофит
  • KCl*MgCl2*6H2O - карналлит


Галогены в чистом виде можно получить путем электролиза водных растворов и расплавов их солей. Например, хлор в промышленности получают электролизом водного раствора хлорида натрия.

Электролизом расплава гидрофторида калия KHF2 в безводной плавиковой кислоте - HF - был впервые получен фтор.

Более активные галогены способны вытеснять менее активные. Активность галогенов убывает: F → Cl → Br → I.


В лабораторных условиях галогены могут быть получены следующими реакциями.

    Реакции с металлами

Для галогенов характерна высокая реакционная способность. Фтор реагирует со всеми металлами без исключения, некоторые из них в атмосфере фтора самовоспламеняются.

Реакции с неметаллами

Хлор, как и фтор, химически весьма активен. Не реагирует только с кислородом, азотом и благородными газами.


F2 + H2 → HF (в темноте со взрывом)

Галогены вступают в реакцию друг с другом. Чтобы определить степени окисления в получающихся соединениях, вспомните электроотрицательность ;)

Br2 + F2 → BrF (фтор более электроотрицателен, чем бром - F - )

Br2 + I2 → IBr3 (бром более электроотрицателен, чем йод - Br - )

Реакции с водой

Реакция фтора с водой протекает очень энергично, носит взрывной характер.

Хлор реагирует с водой обратимо, образуя хлорную воду - смесь хлорноватистой и соляной кислоты. Бром вступает в те же реакции, что и хлор.


Замечу, что активность йода существенно ниже, чем у остальных галогенов. С неметаллами йод почти не реагирует, а с металлами - только при нагревании.

Реакции с щелочами

Cl2 + NaOH → NaCl + NaClO + H2O

Галогены способны вытеснять друг друга из солей. Более активные вытесняют менее активные.

KBr + I2 ⇸ (реакция не идет, так как йод менее активен, чем бром)

Соединения, образованные из галогенов и водорода. К галогеноводородам относятся следующие вещества:

  • HF - фтороводород (газ), фтороводородная (плавиковая) кислота (жидкость)
  • HCl - хлороводород (газ), соляная кислота (жидкость)
  • HBr - бромоводород, бромоводородная кислота
  • HI - йодоводород, йодоводородная кислота
  • HAt - астатоводород, астатоводородная кислота

При н.у. HCl, HBr, HI - газы, хорошо растворимые в воде.

В промышленности применяют получение прямым методом: реакцией водорода с галогенами.

В лабораторных условиях галогеноводороды можно получить в реакциях обмена между галогенсодержащими солями и сильными кислотами.

HF - является слабой кислотой, HCl, HBr, HI - сильные кислоты. Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.


Галогеноводороды реагируют с основными, амфотерными оксидами и основаниями с образованием соответствующих солей.

KOH + HCl → KCl + H2O (реакция нейтрализации)


Реакции протекают в тех случаях, если в результате выпадает осадок, выделяется газ или образуется слабый электролит (вода).

В некоторых реакциях проявляют себя как сильные восстановители, особенно HI.


В целом взаимодействие галогеноводородов с оксидами неметаллов нехарактерно. В этой связи важно выделить реакцию SiO2 с плавиковой кислотой.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

или подгруппа фтора

Фтор, хлор, бром, йод и астат

Общее электронное строение:

nS 2 np 5


И, как всегда, все не так просто, как хотелось бы…

Как уже было замечено в предыдущих лекциях (подгруппа кислорода) у первого элемента — F (фтора) все соответствует общей формуле — на внешнем уровне 7 электронов. А вот у хлора (Cl) — элемента 3-го периода появляется свободная d-орбиталь и возможность распаривать на нее электроны.


Благодаря этой возможности — распаривать электроны p-подуровня на d-подуровень, для всех элементов кроме фтора (. ) возможны степени окисления +1, +3, +5 и +7.


  1. Валентность элементов:
    • валентность фтора = 1,
    • валентность хлора и остальных галогенов — 1,3,5 и 7
  2. Степени окисления:
    • степень окисления фтора = -1 — типичный неметалл, самый сильный неметалл — просто КОРОЛЬ неметаллов — самый верхний в группе и самый левый в периоде.;
    • степень окисления хлора и остальных галогенов = -1 (минимальная степень окисления), +1 , +3, +5 и +7 (максимальная степень окисления) в минимальной с.о. элементы будут проявлять восстановительные свойства, в максимальной — окислительные.
  3. Сверху вниз в подгруппе радиус атома увеличивается, следовательно, электроны все слабее притягиваются к ядру атома, следовательно, сверху вниз металлические свойства увеличиваются.
  4. Как следствие этого сверху вниз в подгруппе усиливаются восстановительные свойства.

Физические свойства галогенов

  • Фтор — F2 — светло-желтый газ;
  • Хлор Cl2 — желто-зеленый газ;
  • Бром — Br2 — бурая жидкость;
  • Йод — J2 — темно-фиолетовые кристаллы, металлический блеск.

Химические свойства галогенов

Фтор — самый активный неметалл, нет веществ, с которыми он не вступал бы в реакции, он НИКОГДА не проявляет положительные степени окисления. Это КОРОЛЬ неметаллов.

1. Взаимодействие с водородом :

F2 + H2 = 2HF — плавиковая кислота

2. Взаимодействие с металлами:

F2 + 2Li = 2LiF — фторид лития (галогениды )

3. Взаимодействие с неметаллами:

F2 + O2 = OF2 (кислород здесь проявляет с.о. +2)

4.Окислительный свойства:

Сl2 + H2S = S + 2HCl

5. Взаимодействие с водой:

раствор HF — плавиковая кислота
Cl2 + H2O ↔ HCl + HClO — оксокислоты хлора

Не смотря на то, что эти реакции написаны для фтора и хлора, естественно, они применимы и к брому, и к йоду (кроме взаимодействия с кислородом — там придется элементы поменять местами).

Как и во всех других группах, химические свойства соединений галогенов подчиняются законам периодичности:

  • сверху вниз в подгруппе восстановительные свойства усиливаются.
  • сила кислот сверху вниз увеличивается
  • с увеличением степени окисления элемента в оксосоединениях усиливаются окислительные свойства.

Отдельно мы разберем Кислоты хлора — их немало, и их названия, а тем более называния солей, желательно знать наизусть

Фтор – газ светло-зеленого цвета (tпл = — 220 о С tкип = — 188 о С). По поводу истинного цвета фтора возникало немало разногласий: из-за необычайно высокой реакционной способности редко кто осмеливался получать его в достаточном количестве в прозрачном сосуде. Но последующие исследования подтвердили окраску фтора, о которой сообщал ещё Муассан.


Фтор в запаянной ампуле

Фтор взаимодействует почти со всеми простыми веществами, включая тяжелые инертные газы (Kr, Xe). В его атмосфере загорается даже стекловата (SiO2 + 2F2 = 4HF + O2) и вода (2H2O + 2F2 = 4HF + O2). При этом наряду с кислородом в продуктах реакции присутствуют фториды кислорода OF2, O2F2 и озон O3.

Фтор используют для получения некоторых ценных фторпроизводных углеводородов, обладающих уникальными свойствами, как, например, смазочных веществ, выдерживающих высокую температуру, пластической массы, стойкой к химическим реагентам (тефлон), жидкостей для холодильников (фреонов).

В организме человека фтор содержится в виде нерастворимых фторидов, главным образом фторапатита, и входит в состав костной ткани и зубной эмали. Для укрепления эмали рекомендуют использовать специальные фторсодержащие зубные пасты. С этой же целью фторируют питьевую воду, доводя концентрацию фторид-ионов примерно до 1 мг/л. Однако следует помнить, что в больших количествах растворимые в воде фториды ядовиты.

Фториды – соли слабой плавиковой кислоты HF, представляющей собой водный раствор фтороводорода. Молекулы HF в плавиковой кислоте связаны друг с другом настолько прочными водородными связями, что ее состав правильнее было бы передать формулой (HF)n. Поскольку эта кислота (наряду с газообразным фтороводородом) обладает уникальной способностью разъедать стекло, её хранят в полиэтиленовой, свинцовой или парафиновой посуде.

Применение фтористого водорода довольно разнообразно. Безводный HF используют, главным образом, при органических синтезах, а плавиковую кислоту – при получении фторидов, травления стекла, удалении песка с металлических отливок, при анализах минералов и т.д.

Физические свойства

При обычных условиях хлор – газ жёлто-зеленого цвета с резким запахом. Он в 2,5 раза тяжелее воздуха, ядовит. Вдыхание даже небольших количеств хлора вызывает раздражение дыхательных путей и кашель. В одном объёме воды при 20 о С растворяется 2,5 объема хлора. Раствор хлора в воде называется хлорной водой.

Нахождение в природе

Хлор в природе в свободном состоянии практически не встречается. Широко распространены его соединения: каменная соль NaCl, сильвинит KCl ∙ NaCl и карналлит KCl ∙ MgCl2. Большое количество хлоридов содержится в морской воде. Хлор входит в состав зеленого вещества растений – хлорофилла.


Минерал сильвинит

Получение

В промышленности хлор получают электролизом водного раствора или расплава хлорида натрия:

В лаборатории хлор можно получить действием концентрированной соляной кислоты (при нагревании) на различные окислители, такие как оксид марганца (IV) MnO2, перманганат калия KMnO4, бертолетова соль KClO3 и др.:

Химические свойства

Хлор – химически активное вещество, взаимодействует с простыми и сложными веществами.

Взаимодействие с простыми веществами

Как сильный окислитель хлор реагирует:

в) с некоторыми менее электроотрицательными неметаллами:

С кислородом и азотом хлор непосредственно не взаимодействует.

Взаимодействие со сложными веществами

а) Реакция взаимодействия хлора с водой идет в две стадии. На первой стадии процесса образуются две кислоты – соляная HCl и хлорноватистая HClO:

Затем происходит процесс разложения хлорноватистой кислоты:

HClO = HCl + [O]→ атомарный кислород

Образованием атомарного кислорода объясняется окисляющее и отбеливающее действие хлора в воде. В хлорной воде погибают микроорганизмы. Органические красители, помещенные в хлорную воду, обесцвечиваются.

б) Обратите внимание, что с кислотами хлор не реагирует.

в) Взаимодействие хлора с растворами щелочей происходит по-разному в зависимости от условий протекания реакции:

на холоде: Cl2 + 2NaOH = NaCl + NaClO + H2O

при нагревании: 3Cl2 + 6KOH = 5KCl + KClO3 + 3H2O

г) Хлор взаимодействует с бромидами и йодидами металлов:

С фторидами металлов хлор не реагирует, так как его окислительная способность ниже окислительной способности фтора:

д) Хлор легко взаимодействует со многими органическими веществами, например с метаном, бензолом и др.:

Хлороводород и соляная кислота

Хлороводород HCl – бесцветный газ с резким запахом, в воде хорошо растворяется, при 0 о С в 1 л воды растворяется около 400 л HCl. Раствор хлороводорода в воде имеет кислую реакцию и называется хлороводородной, или соляной кислотой. Соляная кислота является сильной кислотой, обладает всеми общими свойствами кислот.

Соляная кислота – активный химический реагент, она взаимодействует:

HCl + NaOH = NaCl + H2O


Реакция соляной кислоты с цинком

  • с металлами, которые находятся в ряду напряжений до водорода:

Последняя реакция является качественной реакцией на хлорид-ион.

Хлороводород можно получать:

а) прямым синтезом водорода и хлора;

б) действием концентрированной серной кислоты на твердые хлориды, например:

(Отметим, что аналогичным способом можно получать HF, но нельзя получить HBr и HI, так как они являются сильными восстановителями и окисляются серной кислотой до свободных брома и йода).

Применение хлора и хлороводорода. Физиологическая роль соляной кислоты в организме человека

Хлор используется для отбеливания бумаги и тканей, в производстве пластмасс, для дезинфекции питьевой воды. Хлор является исходным веществом при получении таких важнейших продуктов, как хлорная известь, фосген, хлороформ, определенные виды моющих средств, ядохимикатов, каучуков и т.д. Огромное количество хлора используется для синтеза хлороводорода, растворением которого в воде получают соляную кислоту.

В организме человека соляная кислота вырабатывается клетками слизистой желудка. Она играет важную физиологическую роль, так как способствует перевариванию белков и убивает различные болезнетворные бактерии.

Скачать рефераты по другим темам можно здесь

*на изображении записи фотография сильвинитовой шахты

Все элементы периодической таблицы Менделеева объединяют в группы, в зависимости от их химических свойств. В данной статье мы разберем, что такое галогены (или галоиды).


Значение понятия галогены

Галогены – это элементы из периодической таблицы Менделеева 17 группы, а по устаревшей классификации – 7 главной подгруппы. К галогенам относится всего 5 химических элементов, среди которых фтор, хлор, иод, астат и бром. Все они являются неметаллами. Галогены – очень активные окислители, а на внешнем уровне данные элементы имеют по 7 электронов.

Физические свойства группы галогенов

Химические свойства галогенов схожи, но по физическим характеристикам элементы отличаются друг от друга.


Химические свойства группы галогенов

Основным общим свойством всех галогенов является то, что они все очень активные окислители. Самым активным галоидом является фтор, который реагирует со всеми металлами, а самый неактивный – астат.

Взаимодействие с галогенами у простых веществ (исключение составляют некоторые неметаллы) проходит легко. В природе они встречаются только в виде соединений.

Такой химический элемент, как фтор был получен лишь в конце XIX века французским ученым по имени Анри Муассан. Фтор – это газ бледно-желтого цвета. Галогены являются типичными неметаллами и окислителями, а фтор из всех галогенов - самый активный. Сейчас этот галоген незаменим в промышленности ведь его используют при изготовлении труб, изоленты, различных тканевых покрытий, антипригарных поверхностей для сковородок и форм, а в медицине при изготовлении искусственных артерий и вен. В промышленности этот галоген разбавляют азотом.


Хлор – знаменитый химический элемент, относится к группе галогенов. Что такое галогены, мы разобрали выше. Хлор сохраняет основные свойства элементов своей группы.

Но хлор также известен и тем, что является опаснейшим смертельным оружием. В 1915 году немецкие войска использовали против французской армии порядка 6 тыс. баллонов с этим галогеном. Это смертельное оружие было придумано известным немецким химиком Фрицом Хабером.


Астат

Астат интересен тем, что никогда не был получен химиками в таком количестве, чтобы его можно было увидеть невооруженным глазом. И скорее всего, эта возможность никогда им не представится. Если бы специалисты и смогли получить большое количество этого химического элемента, он тут же и испарился бы, по причине возникновения высокой температуры, которая появляется в результате радиоактивного излучения этого элемента. Астат – самый редкий химический элемент, а небольшое его количество содержится в земной коре.

Среди галогенов астат – довольно бесполезный элемент, потому что на данный момент никакого применения ему не найдено.

Применение и значение

Несмотря на то что все галогены имеют схожие химические свойства, применяются они совершенно в разных сферах. Например, фтор очень полезен для зубов, именно поэтому его добавляют в зубные пасты. Применение лечебных и профилактических средств, в составе которых присутствует химический элемент фтор, предотвращает появление кариеса. Хлор используют для получения соляной кислоты, которая незаменима в промышленности и медицине. Хлор используют для изготовления каучука, пластмассы, растворителей, красителей, а также синтетических волокон. Соединения, в которых содержится этот элемент, используют в сельском хозяйстве для борьбы с вредителями. Галоген хлор незаменим для отбеливания бумаги и тканей. Считается, что применение хлора для обработки питьевой воды небезопасно. Бром, который является галогеном, а также иод часто используют в медицине.


Значение галогенов в жизни человека огромно. Если представить существование человечества без галоидов, то мы были бы лишены таких вещей, как фотографии, антисептические и дезинфицирующие средства, каучук, пластик, линолеум и многих других. Помимо этого, данные вещества необходимы организму человека, чтобы нормально функционировать, то есть играют важную биологическую роль. Хоть свойства галогенов и схожи, их роль в промышленности и медицине разная.

Группа сходных по свойствам химических элементов (фтор, хлор, бром, йод и астат), образующих соли при соединении с металлами и широко используемые в практике.

ГАЛОГЕ́НЫ -ов; мн. (ед. галоге́н, -а; м.). [от греч. hals - соль и genesis - род, происхождение]. Группа химических элементов (фтор, хлор, бром, йод и др.), образующих соли при соединении с металлами.

◁ Галоге́нный, -ая, -ое. Г-ые соединения. Г-ая лампа (лампа накаливания, в состав газовой смеси которой кроме инертного газа входят галогены).

галоге́ны (устар. галоиды), химические элементы фтор F, хлор Cl, бром Br, иод I и астат At, составляющие главную подгруппу VII группы периодической системы химических элементов. Название от греч. háls - соль и . genēs - рождающий (при соединении с металлами образуют соли). Молекулы галогенов двухатомны (F2, Cl2 и др.).

ГАЛОГЕНЫ - ГАЛОГЕ́НЫ (устар. выражение галоиды), химические элементы фтор (см. ФТОР) F, хлор (см. ХЛОР) Cl, бром (см. БРОМ) Br, иод (см. ИОД) I и астат (см. АСТАТ) At, составляющие главную подгруппу VII группы периодической системы Менделеева. Названы от греческих hals - соль и genes - рождающий (при соединении с металлами образуют соли). Молекулы галогенов двухатомны (F2, Cl2 и др.).

ГАЛОГЕНЫ (устар. выражение галоиды) - химические элементы фтор F, хлор Cl, бром Br, иод I и астат At, составляющие главную подгруппу VII группы периодической системы Менделеева. Названы от греческих hals - соль и genes - рождающий (при соединении с металлами образуют соли). Молекулы галогенов двухатомны (F2, Cl2 и др.).

-ов, мн. (ед. галоге́н, -а, м.).

Группа химических элементов (фтор, хлор, бром, йод и др.), дающих при соединении с металлами соли.

[От греч. ‛άλς, ‛αλός - соль и γένος - род, происхождение]

ПОДГРУППА VIIA. ГАЛОГЕНЫ

ФТОР, ХЛОР, БРОМ, ИОД, АСТАТ

Галогены и особенно фтор, хлор и бром имеют большое значение для промышленности и лабораторной практики как в свободном состоянии, так и в виде различных органических и неорганических соединений. Фтор бледножелтый высокореакционноспособный газ, вызывающий раздражение дыхательных путей и коррозию материалов. Хлор тоже едкий, химически агрессивный газ темного зеленовато-желтого цвета менее реакционноспособен по сравнению со фтором. Он широко используется в малых концентрациях для дезинфекции воды (хлорирование), а в больших концентрациях ядовит и вызывает сильное раздражение дыхательных путей (газообразный хлор применяли как химическое оружие в Первой мировой войне). Бром тяжелая красно-коричневая жидкость при обычных условиях, но легко испаряется, превращаясь в едкий газ. Иод темнофиолетовое твердое вещество, легко сублимирующееся. Астат радиоактивный элемент, единственный галоген, не имеющий стабильного изотопа.

В семействе этих элементов по сравнению с другими А-подгруппами наиболее выражены неметаллические свойства. Даже тяжелый иод типичный неметалл. Первый член семейства, фтор, проявляет "сверхнеметаллические" свойства. Все галогены акцепторы электронов, и у них сильно выражена тенденция к завершению октета электронов путем принятия одного электрона. Реакционная способность галогенов уменьшается с ростом атомного номера, и в целом свойства галогенов изменяются в соответствии с их положением в периодической таблице. В табл. 8а приведены некоторые физические свойства, позволяющие понять отличия и закономерность изменения свойств в ряду галогенов. Фтор проявляет во многом необычные свойства. Например, установлено, что сродство к электрону у фтора не так высоко, как у хлора, а это свойство должно указывать на способность принимать электрон, т.е. на химическую активность. Фтор же ввиду очень малого радиуса и близости валентной оболочки к ядру должен обладать наивысшим сродством к электрону. Это несоответствие, по крайней мере отчасти, объясняется необычно малой энергией связи FF по сравнению с этой величиной для ClCl (см. энтальпию диссоциации в табл. 8а). Для фтора она равна 159 кДж/моль, а для хлора 243 кДж/моль. Из-за малого ковалентного радиуса фтора близость неподеленных электронных пар в структуре :F:F: определяет легкость разрыва этой связи. Действительно, фтор химически более активен, чем хлор, благодаря легкости образования атомарного фтора. Величина энергии гидратации (см. табл. 8а) указывает на высокую реакционную способность фторид-иона: ион Fгидратируется с большим энергетическим эффектом, чем другие галогены. Маленький радиус и соответственно более высокая зарядовая плотность объясняют большую энергию гидратации. Многие необычные свойства фтора и фторид-иона становятся понятными при учете размера и заряда иона.

Получение. Большое промышленное значение галогенов предъявляет определенные требования к методам их производства. С учетом разнообразия и сложности методов получения существенное значение имеют расход и стоимость электроэнергии, сырья и потребности в побочных продуктах.

Фтор. Из-за химической агрессивности фторид- и хлорид-ионов эти элементы получают электролитическим путем. Фтор получают из флюорита: CaF2 при обработке серной кислотой образует HF (плавиковая кислота); из HF и KF синтезируют KHF2, который и подвергают электролитическому окислению в электролизере с раздельными анодным и катодным пространствами, со стальным катодом и угольным анодом; на аноде выделяется фтор F2, а на катоде побочный продукт водород, который следует изолировать от фтора во избежание взрыва. Для синтеза таких важных соединений, как полифторуглеводороды, в электролизере выделяющимся фтором фторируют органические соединения, благодаря чему не требуются изоляция и накапливание фтора в отдельных емкостях.

Хлор производят в основном из рассола NaCl в электролизерах с отделенным анодным пространством для предотвращения реакции хлора с другими продуктами электролиза: NaOH и H2; таким образом, в результате электролиза получается три важных промышленных продукта хлор, водород и щелочь. Для осуществления этого процесса используют различные модификации электролизеров. Хлор получается и как побочный продукт при электролитическом производстве магния из MgCl2. Большая часть хлора используется для синтеза HCl по реакции с природным газом, а HCl расходуется для получения MgCl2 из MgO. Хлор образуется и в металлургии натрия из NaCl, однако метод электролиза из рассола дешевле. В лабораториях промышленно развитых стран производят многие тысячи тонн хлора по реакции 4HCl + MnO2 = MnCl2 + 2H2O + Cl2.

Бром получают из скважин с рассолом, которые содержат больше бромид-ионов, чем морская вода, являющаяся вторым по значимости источником брома. Бромид-ион легче превращается в бром, чем фторид- и хлорид-ионы в аналогичных реакциях. Поэтому для получения брома используют, в частности, хлор в качестве окислителя, так как активность галогенов в группе убывает сверху вниз и каждый ранее стоящий галоген вытесняет последующий. В производстве брома рассолы или морскую воду предварительно подкисляют серной кислотой, а затем обрабатывают хлором по реакции

2Br+ Cl2 -> Br2 + 2Cl

Бром выделяют из раствора выпариванием или продувкой с последующим его поглощением разными реагентами в зависимости от дальнейшего применения. Например, при реакции с нагретым раствором карбоната натрия получают кристаллические NaBr и NaBrO3; при подкислении смеси кристаллов бром регенерируется, обеспечивая не прямой, но удобный метод накопления (хранения) этой коррозионно-активной с неприятным запахом ядовитой жидкости. Бром можно также поглощать раствором SO2, в котором образуется HBr. Из этого раствора бром легко выделить, пропуская хлор (например, с целью проведения реакции брома с этиленом C2H4 для получения дибромэтилена C2H4Br2, который используется как антидетонатор бензинов). Мировое производство брома составляет свыше 300 000 т/год.

Иод получают из золы морских водорослей, обрабатывая ее смесью MnO2 + H2SO4, и очищают возгонкой. Иодиды в значительных количествах содержатся в подземных буровых водах. Иод получают окислением иодид-иона (например, нитрит-ионом NO2или хлором). Иод можно также осаждать в виде AgI, из которого серебро регенерируют взаимодействием с железом, при этом образуется FeI2. Из FeI2 иод вытесняют хлором. Чилийская селитра, в которой содержится примесь NaIO3, перерабатывают для получения иода. Иодид-ион важный компонент пищи человека, так как он необходим для образования иодсодержащего гормона тироксина, контролирующего рост и другие функции организма.

Реакционная способность и соединения. Все галогены реагируют с металлами непосредственно, образуя соли, ионный характер которых зависит и от галогена, и от металла. Так, фториды металлов, особенно металлов подгрупп IA и IIA, являются ионными соединениями. Степень ионности связи убывает с увеличением атомной массы галогена и уменьшением реакционной способности металла. Галогениды с ионным типом связи кристаллизуются в трехмерных кристаллических решетках. Например, NaCl (столовая соль) имеет кубическую решетку. С увеличением ковалентности связи возрастает доля слоистых структур (как у CdCl2, CuCl2, CuBr2, PbCl2, PdCl2, FeCl2 и др.). В газообразном состоянии ковалентные галогениды часто образуют димеры, например Al2Cl6 (димер AlCl3). С неметаллами галогены образуют соединения с почти чисто ковалентной связью, например галогениды углерода, фосфора и серы (CCl4 и др.). Максимальные степени окисления неметаллы и металлы проявляют в реакциях со фтором, например SF6, PF5, CuF3, CoF3. Попытки получить иодиды аналогичного состава не удаются из-за большого атомного радиуса иода (стерический фактор) и из-за сильной тенденции элементов в высокой степени окисления к окислению Iдо I2. Кроме прямого синтеза галогениды можно получать и другими методами. Оксиды металлов в присутствии углерода реагируют с галогенами с образованием галогенидов (например, Cr2O3 превращается в CrCl3). Из CrCl3Ч6H2O дегидратацией нельзя получить CrCl3, а лишь основной хлорид (или гидроксохлорид). Галогениды получаются также при обработке оксидов парами HX, например:


Хорошим хлорирующим агентом является CCl4, например для превращения BeO в BeCl2. Для фторирования хлоридов часто применяют SbF3 (см. выше SO2ClF).

Полигалогениды. Галогены реагируют со многими галогенидами металлов с образованием полигалогенидов соединений, содержащих крупные анионные частицы Xn1. Например:


Первая реакция дает удобный метод получения высококонцентрированного раствора I2 путем добавления иода к концентрированному раствору KI. Полииодиды сохраняют свойства I2. Возможно также получение смешанных полигалогенидов: RbI + Br2 -> RbIBr2 RbIСl2 + Cl2 -> RbICl4

Растворимость. Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении.

Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Раствор иода в CCl4 или других бескислородных растворителях имеет фиолетовую окраску. Можно полагать, что в таком растворителе молекулы иода ведут себя подобно их состоянию в газовой фазе, которая имеет такую же окраску. В кислородсодержащих растворителях происходит оттягивание электронной пары кислорода на валентные орбитали иода.

Оксиды. Галогены образуют оксиды. Никакой систематической закономерности или периодичности в свойствах этих оксидов не наблюдается. Сходство и различия, а также основные способы получения оксидов галогенов указаны в табл. 8б.

Оксокислоты галогенов. При образовании оксокислот более четко проявляется систематичность галогенов. Галогены образуют галогеноватистые кислоты HOX, галогенистые кислоты HOXO, галогеноватые кислоты HOXO2 и галогеновые кислоты HOXO3, где X галоген. Но только хлор образует кислоты всех указанных составов, а фтор вообще не образует оксокислот, бром не образует HBrO4. Составы кислот и основные способы их получения указаны в табл. 8в.

Все кислоты галогенов неустойчивы, однако чистая HOClO3 наиболее стабильна (в отсутствие любых восстановителей). Все оксокислоты являются сильными окислителями, но скорость окисления необязательно зависит от степени окисления галогена. Так, HOCl (ClI) быстрый и эффективный окислитель, а разбавленная HOClO3 (ClVII) нет. В целом, чем выше степень окисления галогена в оксокислоте, тем сильнее кислота, поэтому HClO4 (ClVII) наиболее сильная из известных оксокислот в водном растворе. Ион ClO4, образующийся при диссоциации кислоты в воде, наиболее слабый из отрицательных ионов донор электронной пары. Гипохлориты Na и Ca находят промышленное применение при отбеливании и водоочистке. Межгалогенные соединения соединения различных галогенов друг с другом. Галоген с большим радиусом всегда имеет в таком соединении положительную степень окисления (подвергается окислению), а с меньшим радиусом более отрицательную (подвергается восстановлению). Этот факт вытекает из общей тенденции изменения активности в ряду галогенов. В табл. 8г приведены составы известных межгалогенных соединений (А галоген с более положительной степенью окисления).

Межгалогенные соединения образуются прямым синтезом из элементов. Необычная для иода степень окисления 7 реализуется в соединении IF7, а другие галогены не могут координировать 7 атомов фтора. Прикладное значение имеют BrF3 и ClF3 жидкие вещества, химически аналогичные фтору, но более удобные при фторировании. При этом более эффективен BrF3. Поскольку трифториды сильные окислители и находятся в жидком состоянии, их используют как окислители ракетного топлива.

Водородные соединения. Галогены реагируют с водородом, образуя HX, причем со фтором и хлором реакция протекает со взрывом при небольшой активации ее. Медленнее идет взаимодействие c Br2 и I2. Для протекания реакции с водородом достаточно активировать небольшую долю реагентов с помощью освещения или нагревания. Активированные частицы взаимодействуют с неактивированными, образуя HX и новые активированные частицы, которые продолжают процесс, а реакция двух активированных частиц по главной реакции заканчивается образованием продукта. Например, образование HCl из H2 и Cl2:


Более удобные методы получения галоиодоводородов, чем прямой синтез, дают, например, следующие реакции:


В газообразном состоянии HX являются ковалентными соединениями, однако в водном растворе они (за исключением HF) становятся сильными кислотами. Объясняется это тем, что молекулы воды эффективно оттягивают водород от галогена. Все кислоты хорошо растворимы в воде благодаря гидратации: HX + H2O -> H3O+ + X

HF более склонен к комплексообразованию, чем другие галогеноводороды. Заряды на H и F так велики, а эти атомы так малы, что происходит образование HX-ассоциатов типа полимеров состава (HF)x, где x і 3. В таком растворе диссоциация под действием молекулы воды идет не более чем на несколько процентов от общего количества ионов водорода. В отличие от других галогеноводородов фтороводород активно реагирует с SiO2 и силикатами, выделяя газообразный SiF4. Поэтому водный раствор HF (плавиковая кислота) используют в травлении стекла и хранят не в стеклянной, а в парафиновой или полиэтиленовой посуде. Чистый HF кипит чуть ниже комнатной температуры (19,52° С), поэтому его хранят в виде жидкости в стальных цилиндрах. Водный раствор HCl называют соляной кислотой. Насыщенный раствор, содержащий 36% (масс.) HCl, широко используют в химической промышленности и лабораториях (см. также ВОДОРОД).

Астат. Этот химический элемент семейства галогенов имеет символ At и атомный номер 85, он существует только в следовых количествах в некоторых минералах. Еще в 1869 Д.И.Менделеев предсказал его существование и возможность открытия в будущем. Астат был открыт Д.Корсоном, К.Маккензи и Э.Сегре в 1940. Известно более 20 изотопов, из которых наиболее долгоживущие 210At и 211At. По некоторым данным, при бомбардировке 20983Bi ядрами гелия образуется изотоп астат-211; сообщалось, что астат растворим в ковалентных растворителях, может образовывать At, как и другие галогены, и, вероятно, возможно получение иона AtO4. (Эти данные удалось получить на растворах с концентрацией 1010 моль/л.)

Читайте также: