Справляется ли фагоциты с болезнью рака

8 февраля 2019 11:11

Человеку, оказавшемуся беспомощным в сложной жизненной ситуации, свойственно цепляться за самые эфемерные надежды. Время от времени распространялись слухи о необъяснимых исцелениях — вопреки прогнозам врачей, почти чудесным образом опухоль исчезала. Эти редчайшие случаи как бы намекали, что человек все же не полностью беззащитен перед болезнью. Есть в его распоряжении какая-то сила, неизвестная и неподконтрольная медицине.

Ключевой игрок — лимфоциты. В этих кровяных клетках происходят случайные перестройки особых генов, в результате чего в каждом лимфоците вырабатывается белок-иммуноглобулин, способный узнавать какую-то специфическую загогулину на других белковых молекулах. Когда такая загогулина — например, в составе оболочки зловредного вируса — появляется в поле зрения лимфоцита, он получает сигнал на размножение, производя множество потомков, готовых атаковать этот белок.

Тем не менее иммунной системе можно помочь — подтолкнуть ее к правильному выбору, слегка подрегулировать контрольные механизмы в сторону чуть меньшей толерантности, чуть большей ксенофобии. На этой идее и основаны методы иммунотерапии рака, которые начали развиваться в начале этого столетия.

Несмотря на исключительную важность проблемы рака для человечества и потраченные на эту проблему миллиарды, за победы в этой борьбе присуждено не так уж много Нобелевских премий. За вычетом тех, которыми были отмечены открытия по вирусной природе некоторых онкозаболеваний, их было всего три. Две из них присуждены за последнее десятилетие, и обе — за разные варианты иммунотерапии.

В 2011 году премию решили присудить Ральфу Штайнману, который разработал одну из самых сложных и дорогих методик иммунотерапии — дендритные вакцины. По воле судьбы именно эта терапия продлила его собственную жизнь на пару лет, которых едва хватило на то, чтобы номинироваться на премию (хотя присуждена она была через два дня после его смерти).

Тасуку Хондзё прославился исследованиями белка PD-1. Аббревиатура PD зловеща, и означает она Programmed Death — программируемую смерть. При хорошем варианте развития событий это вовсе не смерть пациента, а напротив, его благополучие. В конце 1990-х Хондзё и его коллеги из Токийского университета получили линию мышей, у которых белка PD-1 не было. Мышки эти были довольно несчастными: ужасно страдали от целого букета аутоиммунных расстройств. Стало быть, смекнули японцы, их белок как-то участвует в системе контроля иммунитета — тормозит иммунный ответ в тех ситуациях, когда он только все портит.

Сперва казалось, что PD-1 — ключ к аутоиммунным заболеваниям, но он оказался фрагментом еще одного пазла. Белок этот делает вот что: передает лимфоциту сигнал о том, что антитела, которые тот производит, никому не нужны, поскольку направлены на собственные клетки тела. А стало быть, такому лимфоциту следует немедленно совершить сеппуку, что он послушно делает.

Раковые клетки умеют казаться своими: они показывают на своих мембранах белковые сигналы, которые побуждают белок PD-1 считать их друзьями. Но если этот белок удастся блокировать, их старания будут тщетны: T-лимфоциты разыщут их и убьют.


Онколог Евгений Витальевич Ледин, к. м. н., руководитель Центра химиотерапии Клинической больницы МЕДСИ в Боткинском проезде, начал работать с чекпойнт-ингибиторами, а именно с пембролизумабом, еще на стадии клинических испытаний препарата. К нему мы и обратились за комментарием, чтобы он исправил наши ошибки и скорректировал (только, пожалуйста, не слишком!) наш чрезмерный оптимизм.

Я не могу отнести иммунотерапию к области чудес: это не более чем очередной шаг. Это появление дополнительных возможностей, которые никакого отношения к чудесам не имеют, лишь одна из опций, занимающая строго определенное место в общей системе лечения онкологических заболеваний.


Ɔ. А вообще бывают чудесные исцеления, когда вопреки прогнозам опухоль вдруг начинает сама собой исчезать?


Ɔ. Как на практике происходит терапия? Есть ли побочные действия?

Сама процедура — это просто получасовая капельница, которая, как правило, хорошо переносится. Сутки пациент может находиться в стационаре. Что касается побочных эффектов, они бывают у любого препарата. Я в своей практике видел такие побочные эффекты при приеме анальгина, что это было пострашнее любой иммунотерапии. Но иммунотерапия хороша еще и тем, что побочные эффекты в ней по сути разделены на черное и белое: либо все хорошо, либо плохо. В химиотерапии много промежуточных серых тонов: кто-то полностью теряет дееспособность, а большая часть пациентов находится в среднем состоянии. В иммунотерапии очень большая доля пациентов вообще никак не ощущает лечение. А у тех, кто переносит терапию плохо, онкологи научились отслеживать эти побочные эффекты и вовремя их останавливать. В целом иммунотерапия значительно комфортнее, чем другие виды противоопухолевой терапии.

То же самое с иммунотерапией: есть подтип опухолей, где работает данный механизм ускользания от иммунного ответа, и там чекпойнт-ингибиторы оказываются эффективны. Чаще это происходит при меланоме или, к примеру, при раке почки. На фоне прочих достижений это кажется чудесным: люди, которые раньше умирали в течение 6–8 месяцев, теперь стали долго жить: четверть пациентов переживают пятилетний рубеж, что в онкологии приравнивается к излечению. Но это не чудо: просто у этой четверти найденный ключик подходит к тому механизму, который лежит в основе их заболевания.

Но, конечно, такое открытие дает новую надежду пациентам и новую мотивацию онкологам. Когда я начинал работать, онкология была другой. Если сравнить ситуацию сейчас и 20 лет назад, то сейчас пациент в значительно более выгодном положении. Новых возможностей колоссальное количество.
Ɔ.

В литературе часто цитируется утверждение Хейнеса и Ламберта (1910) относительно того, что фагоцитарная активность клеток саркомы выше, чем нормальных соединительнотканных клеток; однако это мнение оспаривали многие авторы. Уиллис (1952) указывает, что вопрос о способности опухолевых клеток к фагоцитозу остается спорным. Разумеется, спорить можно по любому вопросу, по Уиллис считает, что у опухолевых клеток способность к фагоцитозу, возможно, вообще отсутствует.

Льюис (1927) установил, что в культурах ткани у опухолевых фибробластов фагоцитоз встречается чаще, чем у нормальных клеток, находящихся в аналогичных условиях. Плазматические мембраны одних клеток пропускают вирусные частицы, а других - не пропускают. Образование больших внутриклеточных включений, вызываемое некоторыми вирусами, вряд ли можно считать мерой фагоцитарной активности соответствующих клеток. Формирование таких включений может быть результатом размножения внутри клетки небольшого числа проникших в нее вирусных частиц, а также реакции цитоплазмы на присутствие этих частиц. Подобные явления могут быть типичны для одних и нехарактерны для других типов злокачественных клеток.

Изучая культуры ткани меланом кожи и метастазов этих опухолей в лимфатические узлы, а также культуры мышиной меланомы (штамм Хардинга-Пасси), Гранд, Чемберс и Камерон (1935) уделили особое внимание фагоцитозу. Оказалось, что фагоцитоз наблюдается главным образом у макрофагов, редко — у фиброцитов и никогда — у меланобластов. Меланобласты всегда крайне малоподвижны. Их клеточное тело остается в одном положении в течение многих дней, и лишь в дендритах видно медленное передвижение гранул взад и вперед.

Барнс и Ферс (1937) показали, что злокачественные клетки переживаемого штамма лейкемии мышей не фагоцитируют туберкулезные бактерии или частички угля. По распределению гранул нейтрального красного в этих клетках можно думать, что они родственны моноцитам. Если эти лейкемические клетки действительно возникают из моноцитов, то они могут служить примером утраты способности к фагоцитозу при злокачественном превращении.

В карциномах мы иногда наблюдаем иную картину: злокачественные клетки обладают некоторой способностью к фагоцитозу, тогда как их эпителиальные прототипы, очевидно, совсем не обладают такой способностью. Коллер и Ваймаут (1953) обнаружили внутриклеточно расположенные лейкоциты в клетках перевиваемых крысиных сарком; движение этих лейкоцитов в цитоплазме было прослежено при помощи микрокиносъемки. Вопрос состоит в том, фагоцитируются ли эти лейкоциты саркоматозными клетками или, наоборот, лейкоциты активно инвазируют саркоматозные клетки, которые не проявляют признаков фагоцитарной активности. По данным Стокарда (1928), инвазия нормальных клеток лейкоцитами является закономерным процессом, характерным для некоторых стадий эстрального цикла морских свинок.

В целом можно сделать вывод, что способность к фагоцитозу крупных частиц нельзя считать характерной чертой злокачественных клеток. Однако было бы удивительно, если бы эти клетки совсем не обладали такой способностью.

Каким должно быть питание при онкологических заболеваниях? Какие продукты абсолютно противопоказаны при той или иной форме рака?

Фитотерапия способна оказать существенную помощь не только в лечении онкологических заболеваний, но также и в их профилактике.

Многих людей, имеющих у себя или у родственников онкологическое заболевание, интересует вопрос: передается ли рак по наследству?

Лечение рака во время беременности является довольно сложным, ведь большинство лекарственных средств обладает токсичностью.

Какие перспективы у беременности после перенесенного онкологического заболевания? Следует ли выдерживать срок после лечения рака?

Профилактика является важной частью общей борьбы с онкологическими заболеваниями. Как же уменьшить вероятность возникновения рака?

Что представляет из себя паллиативное лечение рака? Как оно может повлиять на качество жизни онкологического больного и изменить ее к лучшему?

Учеными разработано достаточно много перспективных методов лечения рака, пока еще не признанных официальной медициной. Но все может измениться!

Как найти силы для борьбы с раком? Как не впасть в отчаяние от возможной инвалидности? Что может послужить надеждой и смыслом жизни?

Бытует такое мнение, что постоянные стрессовые ситуации способны привести к развитию онкологических заболеваний. Так ли это?

Многие онкологические больные часто страдают от резкой потери веса. Чем это вызвано и можно ли как-то справиться с этой проблемой?

Правила ухода за больными, вынужденными постоянно находиться в кровати, имеют свои особенности и их нужно обязательно знать.


Немецкие ученые предложили целенаправленно удалять вредные клетки, оставляя полезные. Иммунная система человека может оказывать на раковые опухоли противоречивое действие. Одни клетки могут разрушать опухолевые клетки и метастазы, а другие, наоборот, способствуют развитию рака. В новейших методах терапии онкологических заболеваний, предполагающих удаление иммунных клеток, необходимо учитывать эти обстоятельства.

Группа ученых с Кафедры генетики университета Нюрнберга-Эрлангена впервые идентифицировала тип клеток, которые могут разрушать метастазы злокачественной меланомы кожи и легких посредством специфических антител. Исследователи смогли показать, что различные виды встречающихся в опухоли фагоцитов крайне важны для лечебной активности антител. Поскольку определенные группы этих иммунных клеток могут способствовать росту опухоли, ученые указали на возможность целенаправленно удалять стимулирующие опухолевой рост клетки и оставлять клетки, разрушающие опухоль.

за содержание информации


Жирная кислота - дигомогамма-линоленовая кислота (DGLA) - может убивать клетки рака человека, сообщает Medical Express. Кислота вызывает ферроптоз, как показали эксперименты с червями и человеческими клетками.


Хотя иммунотерапия дала определенную надежду на лечение рака, она не справляется со значительной долей имеющихся сейчас пациентов. Однако новое исследование, опубликованное в журнале.


Прототип лекарства против аутоиммунных заболеваний и рака - новая разработка группы ученых из Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова (ИБХ) РАН и Университета Левена.


Рак поджелудочной железы имеет плохой прогноз, зачастую выявляется он на самых последних стадиях. Однако новое исследование, опубликованное в журнале BJS показывает, что определенный.


Ингибиторы АПФ или блокаторы рецепторов ангиотензина II назначают при сердечной недостаточности, высоком кровяном давлении или различных сердечных недугах. Они, пишет News-medical.net, подавляют или.


Сотрудники МФТИ, передает ТАСС, смогли повысить эффективность лекарств и диагностических препаратов на основе наночастиц за счет использования антител, отвлекающих иммунную систему.


Компания Roche сообщила, что Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) одобрило фиксированную комбинацию препаратов пертузумаб и трастузумаб.



Метод, известный как CAR-T-терапия, успешно применяется для пациентов с раком крови, таким как лимфома и лейкоз. Он модифицирует собственные Т-клетки пациента, добавляя кусочек антитела, который распознает.


По данным Китайской академии наук, группе исследователей удалось создать биоразлагаемые наночастицы, нацеленные на опухоли. Эти частицы обещают подарить эффективную терапию против разных видов рака.


Согласно новому исследованию, тип МРТ-сканирования (T1-взвешенное), используемого для контроля сердечно-сосудистых заболеваний, может помочь в оценке агрессивности рака у детей и выявить ранние признаки ответа на лечение.


О влиянии рациона человека на течение рака ученые говорят давно. "Российская газета" рассказывает о том, что голландские исследователи изучили результативность низкокалорийной диеты, имитирующей голодание.



Международная исследовательская группа во главе с доктором Тали Иловичем с кафедры биомедицинской инженерии Тель-Авивского университета разработала неинвазивную технологическую платформу для доставки.


Исследователи из Университета Цинциннати обнаружили потенциальную новую комбинированную терапию для рака молочной железы, которая объединяла бы использование иммунной системы организма с целевым.

  • Как работает иммунитет. Т-лимфоциты: клетки хелперы, киллеры, супрессоры
  • Как опухоль пытается обмануть иммунную систему
  • Нобелевская премия по медицине-2018: в чем суть открытия
    • Открытие доктора Джеймс Эллисон
    • Открытие доктора Тасуку Хондзё
  • Какие препараты используют для иммунотерапии рака: название, стоимость

Первая в этом году Нобелевская премия по медицине-2018 была обнародована Нобелевским Комитетом 1 октября 2018 года на своем официальном сайте, где дан пресс-релиз события. Премию получили двое ученых за исследования в области рака: они нашли способ, как заставить иммунную систему больного самой справиться с раковыми клетками. Лауреатами стали 70-летний профессор Техасского университета в Остине (США) Джеймс Эллисон и его 76-летний коллега Тасуку Хондзё из Киотского университета (Япония).


Они обнаружили два разных механизма, с помощью которых организм подавляет активность Т-лимфоцитов (иммунных клеток-убийц).

Интересно, как фармацевтические картели отнесутся к открытию? Они ведь всегда стоят на страже своих баснословных доходов…. После того, как я выяснила стоимость одного флакона антител — вопрос отпал сам по себе — цена фантастическая (см. в конце статьи), фармацевтическая промышленность только выиграет от изобретения.

Почему пишу эту статью? Хочу объяснить механизм, как можно заставить иммунитет самостоятельно уничтожить опасную опухоль.

Иммунитет состоит из разных клеток. Чтобы легче воспринимать информацию, я постараюсь обойтись минимумом специальной медицинской терминологии. Если говорить в общем, то в иммунная система — это ее активаторы (стимуляторы) и тормоза (ингибиторы). Именно баланс между ними свидетельствует об сильном иммунитете, который справится с любой болезнью.

Как работает иммунитет. Т-лимфоциты: клетки хелперы, киллеры, супрессоры

Названные клетки (хелперы, киллеры и супрессоры) относятся к Т-лимфоцитам — это тип белых кровяных клеток, каждая из которых исполняет определенную функцию. Главное задание иммунитета — уметь распознавать свои и чужие клетки. С этим отлично справляются Т-хелперы — они идентифицируют чужака или свою поврежденную клетку и стимулируют иммунный ответ, вызывая к работе клетки Т-киллеры, клетки-фагоциты и усиленный синтез антител.

Причина гибели — кусочки мембраны, оставленные на их поверхности Т-киллером. Кусочки мембраны вызывают сквозное отверстие в той клетке, к которой они прикоснулись, ее внутренняя среда начинает напрямую сообщаться с внешней — клеточный барьер нарушается. Обреченная клетка раздувается водой, из нее выходят белки цитоплазмы, органеллы разрушаются… Она погибает, а дальше к ней подходят фагоциты и пожирают ее остатки.

Именно Т-киллеры осуществляют агрессивный иммунный ответ при помощи усилителей — Т-хелперов.

Реклама MEDICINETEASER

Как опухоль пытается обмануть иммунную систему

Нобелевская премия по медицине-2018: в чем суть открытия

Оба ученых-лауреата шли к открытию разными путями. Давайте рассмотрим что исследовал каждый из них и как им удалось заставить иммунитет справиться с онкологией.

Джеймс Эллисон сумел разблокировать иммунную систему с помощью антител против белка-тормоза. Доктор изучал действие определенного клеточного белка Т-лимфоцитов (условное название CTLA-4). Он пришел к выводу, что этот белок тормозит работу Т-лимфоцитов.

Ученый искал пути, как разблокировать иммунною систему. Ему пришла идея разработать антитело, которое свяжет белок-тормоз и заблокирует его функцию подавления иммунной системы. Джеймс Эллисон провел ряд экспериментов с мышами, зараженными раком. Его интересовал вопрос, поможет ли блокада белка (CTLA-4) антителами освободить иммунную систему для атаки раковых клеток.

Больных раком лабораторных мышей удалось вылечить с помощью терапии антителами, которые сняли торможение иммунного ответа и разблокировали противоопухолевую активность Т-лимфоцитов.

В 2010 году доктор Эллисон провел клинические исследования пациентов, больных меланомой (рак кожи). У части больных полностью исчезли остаточные следы рака кожи — как следствие иммунотерапии.

Вот так это выглядит на инфографике, созданной Нобелевским комитетом.

Слева на рисунке видно белок-тормоз и клеточный рецептор. Усилитель не работает (зеленый пупырышек). Справа — антитела (зеленого цвета) против CTLA-4 блокируют функцию торможения лимфоцитов, белок-тормоз нейтрализован антителом, клеточный усилитель подает усиленный сигнал иммунной системе и Т-лимфоциты начинают атаковать раковые клетки.

Молекула белка CTLA-4 появлялась только на активированных Т-клетках. Заслуга Эллисона в том, что он предположил, что все наоборот: CTLA-4 появляется на активированных клетках специально, чтобы их можно было остановить! То есть, на каждой активированной Т-клетке есть ингибирующая молекула, которая конкурирует за прием сигнала (и включение или выключение работы иммунитета).

Доктор Тасуку Хондзё на несколько лет раньше также открыл белок-тормоз (PD-1 ), расположенный на поверхности клеток лимфоцитов. Тасуку Хондзё исследовал аналогичный белок иммунных клеток (PD1) и выяснил, что он работает как тормоз, не давая опухоли развиваться и блокируя Т-киллеры.

Ученый также синтезировал антитела к PD-1, которые сняли блокировку и, как результат — усиленная иммунная атака на раковые клетки.


Как видите, одновременно оба ученые сделали открытие, как снять механизм торможения протеинами работы иммунной системы. После блокировки этих белков-тормозов антителами (к каждому конкретному протеину), развязываются руки иммунным клеткам и они активно убивают онкологические опухоли.

Обе блокирующие молекулы — CTLA-4 и PD-1 — и соответствующие им сигнальные пути назвали иммунными чекпоинтами (от англ. checkpoint — контрольная точка).

В настоящее время проводится множество тестов и клинических опытов в области иммунотерапии рака и в качестве цели тестируются новые контрольные белки, обнаруженные нобелевскими лауреатами.

Прошло не меньше 15 лет между открытиями чекпоинтов и одобрением лекарств на основе их ингибиторов. Сейчас применяют шесть таких препаратов: один блокатор CTLA-4 и пять блокаторов PD-1. Почему блокаторы PD-1 оказались удачнее? Дело в том, что клетки многих опухолей тоже несут на своей поверхности PD-L1, чтобы блокировать активность Т-клеток. Таким образом, CTLA-4 активирует Т-киллеры в целом, а PD-L1 более специфично действуют на опухоль. И осложнений в случае блокаторов PD-1 возникает несколько меньше. Источник

Какие препараты используют для иммунотерапии рака: название, стоимость

В нашей стране используют препараты для иммунной терапии онкологических опухолей. Большинство из них недоступны по цене для обычных больных.


К ним относятся:

  • пембролизумаб (“Китруда”) — эффективен при раке легкого, меланоме
  • ниволумаб (“Опдиво”) — эффективен при раке почки, меланоме
  • ипилимумаб (“Ервой”)
  • атезолизумаб (“Тецентрик”)

Препарат Китруда — представитель группы моноклональных антител. Его особенностью является возможность получения благоприятных результатов даже при лечении метастатических форм злокачественных опухолей. Несмотря на то что в России Кейтруда зарегистрирован в конце 2016 года, купить его практически не возможно даже в Москве и Санкт-Петербурге. Наши сограждане заказывают лекарство в странах Европы — Бельгии, Германии.

Стоимость одного флакона Кейтруда составляет 3290 евро.

Опдиво — более дешевый аналог Китруды.

Препарат Ервой. В качестве монотерапии назначают взрослым и детям старше 12 лет в дозе 3 мг/кг. Ервой вводят внутривенно на протяжении полутора часов каждые 3 недели в количестве четырех доз на курс лечения. Только по окончании терапии можно оценивать эффективность средства и ответную реакцию пациента.

Цена одного флакона препарата Ервой зависит от дозировки действующего вещества и составляет 4200 — 4500 евро за флакон 50 мг/10 мл и 14900 — 15 000 евро за флакон 200 мг/40 мл.

Тецентрик — препарат для терапии уротелиального рака, а также немелкоклеточного рака легких. Препарат можно купить не везде. Приобрести его можно в специализированных аптеках США, в Ватикане, в некоторых аптеках Германии, а также под заказ он поставляется в Израиль. Атезолизумаб является моноклональным антителом, специфичным к белку PD-L1.

Стоимость его – различная, в зависимости от того, где вы его приобретаете и через какую цепочку посредников он вам достался, составляет от 6,5 до 8 тыс. долларов США за один флакон.

Как видите, цена лечения не каждому по карману. Будем надеяться, что со временем, антитела против рака станут более доступными.

Как итог статьи. За внедрение своих разработок в лечение больных раком Нобелевская премия по медицине-2018 присуждена Нобелевским лауреатам 2018 года: Джеймс Эллисон (James Patrick Allison) и Тасуку Хондзё (Tasuku Honjo). Оба ученые сделали открытие, как снять механизм торможения протеинами работы иммунной системы и помочь иммунным клеткам расправиться с опухолью.

Посмотрите объяснения к открытию Нобелевских лауреатов в этом видео:

Прошу читателей: если статья понравилась — поделитесь информацией в соц. сетях — многие могут искать подобную информацию.

Будьте здоровы и берегите собственный иммунитет — тогда рак вас не коснется!

Основные подразделения иммунной системы.


Иммунная система состоит из многих миллионов иммунных клеток, многочисленных настолько, что человеческий ум не в силах это осознать. Представьте себе миллион батальонов, в каждом из которых по миллиону человек. Система обеспечивает два разных типа иммунитета: врожденный и приобретенный. Врожденный иммунитет представляет собой сопротивляемость бактериям, данную человеку от рождения; приобретенный иммунитет развивается в течение жизни, по мере знакомства организма с теми или иными патогенными микробами и вирусами. Иммунная система помнит каждую встречу с бактерией или вирусом и способна в любой момент выработать и пустить в ход вещества, необходимые для уничтожения конкретного врага, если он опять вторгнется в организм.

Другую границу можно провести между клеточными носителями иммунитета — клетками, наделенными защитными способностями, и гуморальным иммунитетом, работа которого основана на химических веществах, циркулирующих в крови и тканях. Первоочередной задачей всей системы является защита организма от инфекции — бактерий, вирусов и различных форм болезнетворных грибков. Она также играет важную роль в предотвращении онкологических заболеваний. Чтобы справиться с возложенной на нее задачей, иммунная система организовывает иммунный ответ — очень сложный процесс, в котором свои усилия объединяют разные группы клеток и веществ.

Работу иммунной системы можно объяснить с помощью военной или полицейской терминологии. В ней есть свои патрульные и свои спецслужбы. Иммунная система обладает собственными отрядами по борьбе с терроризмом, средствами сбора информации, древним и самым современным оружием. Ее средствам связи и оповещения может позавидовать любая армия. Сигнал тревоги оперативно предупреждает о присутствии неприятеля и одновременно запускает механизм иммунного ответа.

Давайте же начнем знакомство с нашими удивительными невидимыми защитниками. Первыми знакомыми станут клетки, которые называются гранулоцитами. Они строят переднюю линию обороны на пути многочисленных врагов.

Гранулоциты: патрульные иммунной системы.

Гранулоциты, с их взрывным темпераментом, живут очень недолго. Они путешествуют в крови от нескольких часов до нескольких дней, а после этого обычно геройски погибают в сражении за ваше здоровье. Несмотря на всю свою грубость и неуклюжесть, гранулоциты хорошо выполняют возложенную на них работу, защищая от бактерий легкие и кожу. Не будь их, маленькие царапинки или нарывы могли бы перерасти в серьезные и опасные болезни. Гранулоциты останавливают коварные болезнетворные бактерии с минимальными потерями для нашего организма.

Макрофаги: агенты безопасности

Как только макрофаг опознает бактерию, вирус или раковую клетку, он выделяет в кровь цитокины. Эти вещества вызывают в организме самые разные реакции, начиная от лихорадки и заканчивая сном. К цитокинам относится и фактор некроза опухолей, который борется с раковыми клетками.

Комплемент: частный детектив.

Лимфоциты: генералы и наставники.

Кроме того, каждый возбудитель той или иной болезни несет не один, а несколько антигенов, поэтому шансы иммунной системы опознать врага достаточно высоки.

Определение антигена — важнейший этап иммунного ответа. Если его не будет, или Т-лимфоциты окажутся ослабленными или поврежденными (как при заболевании СПИДом), арсенал иммунной системы будет неполным, что, в случае попадания в организм инфекции, приведет к весьма печальным и необратимым последствиям.
Как только Т-хелпер узнал антиген, он начинает размножаться, чтобы по организму разошлось как можно больше лимфоцитов с таким же рецептором. И вскоре в прямом смысле слова от головы до пят больного распространяются клетки, способные опознать чужеродный микроорганизм, проникший в человеческое тело.

Цитокины и интерлейкины: армейские курьеры.

Интерлейкин-1 и еще один представитель цитокинов — интерферон — делают больного человека сонным. Как только вы принимаете горизонтальное положение, организм может мобилизовать силы на борьбу с болезнью. Так ему, оказывается, удобней и легче.
Другие цитокины вызывают лихорадку, чтобы сделать внутреннюю среду организма менее благоприятной для чужеродного микроорганизма. Еще одна группа веществ регулирует синтез определенных гормонов и управляет настроением: всем известные подавленность, раздражительность и утомляемость, вызванные простудой, не что иное, как попытка организма заставить вас бросить работу, лечь в постель и ограничить контакты с другими людьми. Во время болезни вы не склонны к общению, и окружающие не слишком жаждут вас повидать. Таким образом, иммунная система заставляет вас позаботиться о себе и на время превратиться в затворника.

Объединенные усилия трех цитокинов — интерлейкина-1, интерферона и фактора некроза опухолей — направлены на выполнение других задач. Совместно эти вещества вызывают увеличение концентрации в крови определенных, связанных с иммунной системой, белков и снижение содержания цинка. Причина последнего явления до сих пор остается загадкой, известно лишь, что цинк очень важен для нормального иммунного ответа.

Интерлейкин-2 также стимулирует пролиферацию (размножение) Т-хелперов, а при необходимости запускает производство фактора некроза опухолей. Помимо этого, интерлейкин-2 способствует образованию гамма-интерферона — вещества, которое не дает размножаться вирусам. Другие цитокины заставляют еще одну группу лимфоцитов, называемых Т-супрессорами, а также клеток-киллеров и макрофагов становиться более агрессивными в присутствии антигена.

Несмотря на то, что все эти реакции неоднократно наблюдались и тщательнейшим образом изучались, многое в иммунной системе остается для ученых тайной.
Зато известно, что именно интерферон заставляет клеток-киллеров набрасываться на антиген. И киллеры, как стая голодных львов, ведут себя вполне предсказуемо и понятно: они несутся к указанной цели и пожирают ее. Происходит это после прикрепления киллеров к стенке чужеродной клетки, когда киллеры либо разрушают клеточную мембрану врага, либо выделяют вещества, уничтожающие неприятеля. Это же происходит и при расправе с раковыми клетками.

В-клетки и антитела: солдаты с химическим оружием.

Т-хелперы также выделяют цитокины, которые стимулируют размножение отдельных типов иммунных клеток. Интересно, что активизируются и приступают к делению только те клетки, которые необходимы для выполнения актуальной задачи.
На поверхности тех Т-хелперов, которые способны узнавать нужный антиген, появляется специальный рецептор, улавливающий интерлейкин-2, который дает клетке команду начать деление.

Ответ на вторичное появление антигена намного быстрее и эффективней первого. На этом построен принцип вакцинации: введение ослабленного антигена дает организму возможность познакомиться с неприятелем, и при серьезной встрече с врагом иммунная система будет готова дать ему решительный отпор.

Вирусы, бактерии и раковые клетки: враги.

Рак начинается с мутации ДНК одной или нескольких клеток, что приводит к их бесконтрольному делению. В нормальных клетках процесс деления жестко контролируется на всех уровнях. Поэтому для возникновения злокачественной опухоли обычно нужна не одна, а целая серия мутаций. Сначала опухоли растут очень медленно. Это значит, что перед иммунной системой стоит задача узнать буквально несколько десятков поврежденных клеток среди триллионов нормальных. Это то же самое, что определить террориста еще до того, как он начнет подготовку к террористическому акту. Тем не менее, ученые считают, что иммунная система справляется с этой задачей успешно и регулярно. Просто поразительной способностью опознавать и убивать раковые клетки обладают макрофаги и клетки-киллеры.

Читайте также: