Соединения фтора с хлором и углеродом

Гидрирование хлорфторуглеродов идёт при высокой температуре с образованием фторуглеводородов [1] :


При повышенной температуре на катализаторе имеет место диспропроционарование хлорфторуглеродов [1] :


В присутствии катализатора – хлорида алюминия хлорфторуглероды алкилируют галогенолефины [1] :


Хлорфторуглероды этанового и пропанового ряда подвергаются дегалогенированию цинком в среде полярного растворителя:


По этой реакции организованно промышленное производство трифторхлорэтилена [1] .

Воздействие на окружающую среду

Практически бесконтрольное использование низших хлорфторуглеродов в качестве пропеллентов аэрозольных упаковок, вспенивателей, растворителей и хладагентов привело к накоплению хлорфторуглеродов в атмосфере. С помощью электронного детектора Лавлока обнаружено присутствие хлорфторуглеродов в верхних слоях атмосферы.

Шервуд Роуланд предсказал, что хлорфторуглероды, произведённые человеком, под действием солнечной радиации разлагаются в атмосфере, образуя хлор и монокись хлора, которые способны эффективно разрушать молекулы озона

Марио Молина и Пауль Крутцен показали истощающий эффект галогеналканов на озоновый слой стратосферы, являющийся природным защитным экраном Земли от губительного жёсткого ультрафиолетового излучения Солнца.

Венской конвенцией 1985 г. и Монреальским протоколом 1987 г. по защите озонового слоя были запрещены производства низших хлорфторуглеродов.

Примечания

См.также

Wikimedia Foundation . 2010 .

  • Хлорофиллиды
  • Хлусово

ХЛОРФТОРУГЛЕРОДЫ — ХЛОРФТОРУГЛЕРОДЫ, см. ГАЛОГЕНУГЛЕРОДЫ … Научно-технический энциклопедический словарь

ХЛОРФТОРУГЛЕРОДЫ — (ХФУ) (chlorofluorocarbons, CFCs) Химические соединения, широко используемые в холодильных установках, кондиционерах и системах отвода тепла. ХФУ получили широкое распространение благодаря своей нетоксичности и, как предполагалось, безвредности.… … Экономический словарь

хлорфторуглероды — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN chlorofluorocarbon Gases formed of chlorine, fluorine, and carbon whose molecules normally do not react with other substances; they are therefore used as spray can propellants… … Справочник технического переводчика

запрет на хлорфторуглероды и галон — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN CFC and halons prohibition An interdiction on the manufacture or use of products that discharge chlorofluorocarbons and bromine containing compounds into the atmosphere,… … Справочник технического переводчика

частично галогенизированные хлорфторуглероды — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN partially halogenated chlorofluorohydrocarbon Hydrocarbons whose hydrogen atoms have been partially substituted with chlorine and fluorine. They are used in refrigeration, air… … Справочник технического переводчика

Фреоны — (хладоны) техническое название группы насыщенных алифатических фторсодержащих углеводородов, применяемых в качестве хладагентов, пропеллентов, вспенивателей, растворителей. Кроме атомов фтора фреоны могут содержать атомы хлора или брома[1].… … Википедия

ПАРНИКОВЫЕ ГАЗЫ — газы (двуокись углерода, водяной пар, окислы азота и серы, хлорфторуглероды или фреоны и другие), производящие эффект парниковый. На сегодняшний день человек в результате своей деятельности уже выбросил в атмосферу такое количество парниковых… … Экологический словарь

Мидгли, Томас — Томас Мидгли англ. Thomas Midgley … Википедия

Реакция Свартса — Реакция Свартса это замена одного или нескольких атомов галогена в полигалогенорганических соединениях на фтор или взаимодействием с трифторидом сурьмы или безводным фтористым водородом в присутсви пентахлорида сурьмы при их нагревании… … Википедия

ГАЛЛОГЕНАЛКАНЫ — (алкилгалогениды), органические и химические соединения, в которых у АЛКАНА один или несколько атомов водорода замещены ГАЛОГЕНОМ. Галогеналканы используются как растворители и применяются в органическом синтезе. Примеры: йодметан (метилйодид… … Научно-технический энциклопедический словарь

Фтор – газ светло-зеленого цвета (tпл = — 220 о С tкип = — 188 о С). По поводу истинного цвета фтора возникало немало разногласий: из-за необычайно высокой реакционной способности редко кто осмеливался получать его в достаточном количестве в прозрачном сосуде. Но последующие исследования подтвердили окраску фтора, о которой сообщал ещё Муассан.


Фтор в запаянной ампуле

Фтор взаимодействует почти со всеми простыми веществами, включая тяжелые инертные газы (Kr, Xe). В его атмосфере загорается даже стекловата (SiO2 + 2F2 = 4HF + O2) и вода (2H2O + 2F2 = 4HF + O2). При этом наряду с кислородом в продуктах реакции присутствуют фториды кислорода OF2, O2F2 и озон O3.

Фтор используют для получения некоторых ценных фторпроизводных углеводородов, обладающих уникальными свойствами, как, например, смазочных веществ, выдерживающих высокую температуру, пластической массы, стойкой к химическим реагентам (тефлон), жидкостей для холодильников (фреонов).

В организме человека фтор содержится в виде нерастворимых фторидов, главным образом фторапатита, и входит в состав костной ткани и зубной эмали. Для укрепления эмали рекомендуют использовать специальные фторсодержащие зубные пасты. С этой же целью фторируют питьевую воду, доводя концентрацию фторид-ионов примерно до 1 мг/л. Однако следует помнить, что в больших количествах растворимые в воде фториды ядовиты.

Фториды – соли слабой плавиковой кислоты HF, представляющей собой водный раствор фтороводорода. Молекулы HF в плавиковой кислоте связаны друг с другом настолько прочными водородными связями, что ее состав правильнее было бы передать формулой (HF)n. Поскольку эта кислота (наряду с газообразным фтороводородом) обладает уникальной способностью разъедать стекло, её хранят в полиэтиленовой, свинцовой или парафиновой посуде.

Применение фтористого водорода довольно разнообразно. Безводный HF используют, главным образом, при органических синтезах, а плавиковую кислоту – при получении фторидов, травления стекла, удалении песка с металлических отливок, при анализах минералов и т.д.

Физические свойства

При обычных условиях хлор – газ жёлто-зеленого цвета с резким запахом. Он в 2,5 раза тяжелее воздуха, ядовит. Вдыхание даже небольших количеств хлора вызывает раздражение дыхательных путей и кашель. В одном объёме воды при 20 о С растворяется 2,5 объема хлора. Раствор хлора в воде называется хлорной водой.

Нахождение в природе

Хлор в природе в свободном состоянии практически не встречается. Широко распространены его соединения: каменная соль NaCl, сильвинит KCl ∙ NaCl и карналлит KCl ∙ MgCl2. Большое количество хлоридов содержится в морской воде. Хлор входит в состав зеленого вещества растений – хлорофилла.


Минерал сильвинит

Получение

В промышленности хлор получают электролизом водного раствора или расплава хлорида натрия:

В лаборатории хлор можно получить действием концентрированной соляной кислоты (при нагревании) на различные окислители, такие как оксид марганца (IV) MnO2, перманганат калия KMnO4, бертолетова соль KClO3 и др.:

Химические свойства

Хлор – химически активное вещество, взаимодействует с простыми и сложными веществами.

Взаимодействие с простыми веществами

Как сильный окислитель хлор реагирует:

в) с некоторыми менее электроотрицательными неметаллами:

С кислородом и азотом хлор непосредственно не взаимодействует.

Взаимодействие со сложными веществами

а) Реакция взаимодействия хлора с водой идет в две стадии. На первой стадии процесса образуются две кислоты – соляная HCl и хлорноватистая HClO:

Затем происходит процесс разложения хлорноватистой кислоты:

HClO = HCl + [O]→ атомарный кислород

Образованием атомарного кислорода объясняется окисляющее и отбеливающее действие хлора в воде. В хлорной воде погибают микроорганизмы. Органические красители, помещенные в хлорную воду, обесцвечиваются.

б) Обратите внимание, что с кислотами хлор не реагирует.

в) Взаимодействие хлора с растворами щелочей происходит по-разному в зависимости от условий протекания реакции:

на холоде: Cl2 + 2NaOH = NaCl + NaClO + H2O

при нагревании: 3Cl2 + 6KOH = 5KCl + KClO3 + 3H2O

г) Хлор взаимодействует с бромидами и йодидами металлов:

С фторидами металлов хлор не реагирует, так как его окислительная способность ниже окислительной способности фтора:

д) Хлор легко взаимодействует со многими органическими веществами, например с метаном, бензолом и др.:

Хлороводород и соляная кислота

Хлороводород HCl – бесцветный газ с резким запахом, в воде хорошо растворяется, при 0 о С в 1 л воды растворяется около 400 л HCl. Раствор хлороводорода в воде имеет кислую реакцию и называется хлороводородной, или соляной кислотой. Соляная кислота является сильной кислотой, обладает всеми общими свойствами кислот.

Соляная кислота – активный химический реагент, она взаимодействует:

HCl + NaOH = NaCl + H2O


Реакция соляной кислоты с цинком

  • с металлами, которые находятся в ряду напряжений до водорода:

Последняя реакция является качественной реакцией на хлорид-ион.

Хлороводород можно получать:

а) прямым синтезом водорода и хлора;

б) действием концентрированной серной кислоты на твердые хлориды, например:

(Отметим, что аналогичным способом можно получать HF, но нельзя получить HBr и HI, так как они являются сильными восстановителями и окисляются серной кислотой до свободных брома и йода).

Применение хлора и хлороводорода. Физиологическая роль соляной кислоты в организме человека

Хлор используется для отбеливания бумаги и тканей, в производстве пластмасс, для дезинфекции питьевой воды. Хлор является исходным веществом при получении таких важнейших продуктов, как хлорная известь, фосген, хлороформ, определенные виды моющих средств, ядохимикатов, каучуков и т.д. Огромное количество хлора используется для синтеза хлороводорода, растворением которого в воде получают соляную кислоту.

В организме человека соляная кислота вырабатывается клетками слизистой желудка. Она играет важную физиологическую роль, так как способствует перевариванию белков и убивает различные болезнетворные бактерии.

Скачать рефераты по другим темам можно здесь

*на изображении записи фотография сильвинитовой шахты


Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s
2s
2p

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s
2s
2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.



Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.



Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n



Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.


В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:


Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.


Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

карбиды металлов (карбид алюминия Al4C3)

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:


Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

2ZnO + C → 2Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Например :

Например :

Например :

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Например :

Например:

СаС2+ 2Н2O →

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Например:

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

SiC + 8HNO3 → 3SiO2 + 3CO2 + 8NO + 4H2O

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:


В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Угарный газ в промышленности также можно получать неполным окислением метана:

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:


Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):


Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

CO2 + C → 2CO

Магний горит в атмосфере углекислого газа:

2М g + CO 2 → C + 2 MgO

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Читайте также: