Открытие ученых о раке


Двое ученых – американец и японец – открыли белки, воздействуя на которые, можно заставить иммунитет самостоятельно уничтожить опасную опухоль

В понедельник, 1 октября, стали известны имена первых нобелевских лауреатов этого года. Ими стали 70-летний профессор Техасского университета в Остине (США) Джеймс Эллисон и его 76-летний коллега Тасуку Хондзё из Киотского университета (Япония). "Лауреаты этого года показали, как разные стратегии сдерживания подавления иммунной системы могут быть использованы в лечении рака. Их открытия – знаменательная веха в нашей борьбе против рака", - говорится в заявлении Шведской королевской академии наук. Приводим пояснение Нобелевского комитета, чем занимаются ученые, в чем значение их работ и почему они уже стали настоящим прорывом в онкологии.

В этом нам поможет инфографика, созданная Нобелевским комитетом.

Слева вверху: Активация Т-лимфоцита требует, чтобы рецептор кровяного тельца связывался со структурами на других иммунных клетках, распознаваемых как "чужие". Для активации Т-лимфоцитов необходим белок, функционирующий, как их ускоритель. CTLA-4 же работает как тормоз, который блокирует функцию этого усилителя.

Слева внизу: Антитела (зеленого цвета) против CTLA-4 блокируют функцию торможения, что приводит к активации Т-лимфоцитов, которые начинают атаковать раковые клетки.

Справа вверху: PD-1 – еще один белок-тормоз, который подавляет активацию Т-лимфоцитов.

Справа внизу: Антитела к PD-1 подавляют функцию торможения, что ведет к активации Т-лимфоцитов и очень эффективной атаке на раковые клетки.


Рак ежегодно убивает миллионы людей. Для современного здравоохранения эта болезнь является одной из самых больших проблем и самых серьезных вызовов. Стимулируя свойственную нашей иммунной системе способность атаковать клетки опухоли, Нобелевские лауреаты этого года основали принципиально новый подход к лечению рака.

Джеймс П. Эллисон изучал определенный белок, который функционирует как тормоз иммунной системы. Именно ему пришла в голову революционная идея: если заставить организм отпустить этот тормоз, наши собственные иммунные клетки смогут активизироваться и начать атаковать опухоли. А затем он развил свою концепцию в совершенно новый подход к лечению пациентов.

Параллельно с ним Тасуку Хондзё обнаружил на иммунных клетках еще один особый белок, тщательно изучил его и в конце концов обнаружил, что он также действует на них, как тормоз, но с другим механизмом действия. Методы лечения, основанные на его открытии оказались поразительно эффективными в борьбе с раком.

Эллисон и Хондзё показали, как различные способы ингибирования тормозов иммунной системы могут быть использованы для лечения рака. Выдающиеся открытия двух сегодняшних лауреатов стали вехой в нашей борьбе против рака.

Может ли наш собственный иммунитет участвовать в лечении рака?

Понятие "рак" включает в себя множество заболеваний, которые характеризуются неконтролируемым ростом аномальных клеток, способных распространяться на здоровые органы и ткани. Для лечения этих болезней применяют целый ряд методов, включая хирургический (непосредственное удаление опухоли), радиационное облучение пораженного участка, и другие стратегии, часть из которых ранее уже были отмечены Нобелевскими премиями. Среди таких методов – гормональная терапия рака простаты (Чарльз Хаггинс, премия за 1966 год), химиотерапия (Гертруда Элайон и Джордж Хитчингс, 1988 год) и трансплантация костного мозга для лечения лейкемии (Эдвард Томас, 1990 год). Однако прогрессирующий рак все еще остается тяжелым для лечения заболеванием и новые терапевтические стратегии по-прежнему крайне необходимы.

В конце 19 и в начале 20 века зародилась концепция, согласно которой активация собственной иммунной системы может быть эффективна против раковых клеток. Пациентов, к примеру, заражали болезнетворными бактериями, чтобы активировать защитные силы организма. Эти усилия давали лишь незначительный эффект, однако одну из вариаций такого метода сегодня применяют в лечении рака мочевого пузыря.

Становилось понятно, что ученым нужно больше знаний в этой области. Многие медики и биологи занимались интенсивными фундаментальными исследованиями, чтобы раскрыть основополагающие механизмы регуляции иммунитета. Кроме того, они показали, как иммунная система может распознавать раковые клетки. Несмотря на значительный научный прогресс, попытки создать обобщаемую новую стратегию борьбы с раком постоянно сталкивались с трудностями.

Ускорители и тормоза в нашей иммунной системе

Фундаментальным свойством нашей иммунной системы является способность распознавать "своих" и "чужих". "Своими" считаются собственные клетки организма, а "чужими" – бактерии, вирусы и другие угрозы, способные негативно воздействовать на организм. Иммунитет распознает их, быстро атакует и устраняет. Ключевыми "игроками" обороны тут выступают Т-лимфоциты – особая разновидность белых кровяных телец. Было показано, что эти тельца обладают рецепторами, которые связываются с "чужими", маркируют их и заставляют организм отвечать на этот вызов – вырабатывать защиту или убивать вторгшихся. Но дополнительные белки, которые действуют, как усилители Т-лимфоцитов, также нужны для запуска полномасштабного иммунного ответа (см. рисунок).

Многие ученые участвовали в этом важном фундаментальном исследовании, в результате им удалось определит также белки, которые действуют на Т-лимфоциты как тормоза и подавляют активацию иммунитета.

Этот сложный баланс между усилителями и тормозами критически важен для контроля над работой иммунной системы.

Он обеспечивает необходимый уровень ее вовлеченности в уничтожение "чужих" и, в то же время, не дает иммунитету работать слишком активно, поскольку в таком случае он может начать уничтожать клетки собственного организма и спровоцировать то, что в медицине называется аутоиммунным заболеванием.

Новый принцип иммунной терапии

В 1990 годах доктор Джеймс Эллисон вел свои лабораторные исследования в Калифорнийском университете в Беркли. Он изучал белок Т-лимфоцитов под названием CTLA-4 и был одним из нескольких ученых, которые пришли к выводу, что этот белок действует на Т-лимфоцит как тормоз, на автомобиль – блокирует его работу. Его коллеги использовали механизм действия CTLA-4 для лечения аутоиммунных болезней. Однако у Эллисона в голове была совершенно другая идея. Он уже выработал антитело, которое может связываться с CTLA-4 и блокировать его функцию (см. рисунок). Поэтому ученый взялся за исследование того, может ли блокирование этого белка отключить тормоз Т-лимфоцита и заставить иммунную систему атаковать раковые клетки.

Свой первый эксперимент Эллисон с коллегами поставил в конце 1994 года, а сразу после рождественских каникул повторил его. Результаты оказались впечатляющими. Больных раком лабораторных мышей удалось вылечить с помощью терапии антителами, которые подавляли торможение иммунного ответа и разблокировали противоопухолевую активность Т-лимфоцитов.

Успехи команды Эллисона не особо заинтересовали фармпромышленность, однако ученый продолжил свои исследования и занялся разработкой стратегии лечения уже не для мышей, а для людей. Перспективные результаты вскоре появились у нескольких исследовательских групп, а в 2010 году важное клиническое исследование показало выраженный эффект у пациентов с развитой меланомой – разновидностью рака кожи. У некоторых пациентов оставшиеся следы рака исчезли полностью. Таких выдающихся результатов у этой группы пациентов раньше добиться не удавалось.

Открытие PD-1 и его важность для лечения рака

В 1992 году, за несколько лет до открытия Эллисон, Тасуку Хондзё открыл PD-1 – еще один белок, выраженный на поверхности Т-лимфоцитов. Ученый задался целью исследовать роль этого белка и разработал для этого целую серию экспериментов, которые в течение многих лет проводились в его лаборатории в Киотском университете. Результаты показали, что PD-1, подобно CTLA-4, функционирует как тормоз для Т-лимфоцитов, но механика его работы иная (см. рисунок).

Опыты на животных показали, что блокирование PD-1 также может стать перспективной стратегией в борьбе с раком. Группа Хондзё и другие ученые показали это на практике. Их работы открыли дорогу в использовании этого белка при лечении пациентов.

За открытием последовали клинические испытания и в 2012 году ключевое исследование продемонстрировало явную эффективность лечения у пациентов с различными типами рака.

Результаты были впечатляющими – лечение приводило к длительной ремиссии и даже вероятному излечению у нескольких пациентов с метастатическим раком, а ведь прежде это состояние считалось практически неизлечимым.

Иммунотерапия рака сегодня и в будущем

После ранних исследований, которые доказали эффективность блокирования белков CTLA-4 и PD-1, последовало значительное развитие метода. Теперь наука уверена, что иммунная терапия рака коренным образом изменила исход лечения для определенных групп пациентов с распространенным раком. Подобно другим методам лечения рака, иммунотерапия также имеет свои неприятные побочные эффекты, которые могут иметь серьезные последствия и даже нести опасность для жизни. Их вызывает сверхактивный иммунный ответ, который ведет к аутоиммунным реакциям. Однако этот ответ обычно управляем. А непрерывные и интенсивные исследования в этой области направлены на выяснение механизмов действия с целью совершенствования терапии и снижения побочных эффектов.

Из двух отмеченных Нобелевской премией методов иммунотерапии рака, направленный на белок PD-1 оказался более эффективным, и его положительные результаты наблюдаются при нескольких типах рака, включая рак легких, рак почек, лимфому и меланому.

Однако новые исследования показывают, что комбинированная терапия, нацеленная как на CTLA-4, так и на PD-1, может быть еще более эффективной, чего уже удалось добиться у пациентов с меланомой.

Таким образом Эллисон и Хондзё вдохновили ученых объединять различные стратегии расторможения иммунной системы, чтобы более эффективно уничтожать раковые клетки. В настоящее время проводится множество исследований в области иммунотерапии, направленной на большинство видов рака, и новые контрольные белки тестируются в качестве ее целей.

Более 100 лет ученые пытались вовлечь иммунную систему в борьбу с раком. До открытий, сделанных Эллисоном и Хондзё, прогресс в этой области был весьма скромным. В настоящее время иммунотерапия уже совершила революцию в лечении рака и коренным образом изменила представление медиков о том, как можно справляться с этой проблемой.


Фото с сайта financialexpress.com

Нобелевские лауреаты 2018 года — Джеймс Эллисон, профессор Хьюстонского онкологического центра имени Андерсона, и Тасуку Хондзё, научный сотрудник университета Киото, шли к своему успеху долгие годы.

Эллисону потребовалось 17 лет, чтобы убедить медицинское сообщество в том, что его неортодоксальный подход к лечению рака может сработать.

Само же открытие ученый сделал в 1994 году, когда проводил исследования на мышах.

Впрочем, по порядку.

Как все начиналось


Фото с сайта news.sky.com

Джеймс Эллисон глубоко убежден: прорывные идеи приходят к тем ученым, которые занимаются фундаментальной наукой, не заботясь о практической стороне дела. А в том, что он станет ученым, никто из знавших Джеймса не сомневался с самого его детства.

В школьные годы он проводил много времени в гараже, экспериментируя в самостоятельно оборудованной лаборатории. Тогда он не знал, что главной темой в его жизни станет рак. Эта болезнь принесла большое горе семье будущего ученого: от нее погибли мать, два его дяди и брат.

Установив это, научное сообщество задалось вопросом: а нельзя ли заставить Т-клетки распознавать и злокачественные новообразования?

Сложность в том, что рак развивается из собственных клеток организма, а Т-клетки не нападают на родственников.

Что же сделать, чтобы иммунитет распознал врага, в которого превратился бывший член семьи, и повел борьбу на его уничтожение? Это стало амбициозной практической задачей для ученого-теоретика.

Ингибиторы контрольных точек: блокировать тормоз


Тасуку Хондзё. Фото с сайта mainichi.jp

В то время как другие ученые сосредоточились на характеристиках самих раковых клеток, Эллисон продолжал изучать работу иммунной системы и обнаружил, что иммунитет располагает специальными механизмами защиты клеток организма от себя самого.

В 2016 году, когда его заокеанский коллега Тасуку Хондзё будет получать у себя на родине престижную премию Киото, он сравнит в своей речи такие механизмы с системой круиз-контроля автомобиля.

На языке науки такой тормоз называется контрольной точкой и представляет собой определенный белок на поверхности опухолевой клетки.

Продленная жизнь Джимми Картера


Джимми Картер. Фото с сайта achievement.org

Ингибиторы контрольных точек дают хорошие результаты при меланоме и раке легких: после терапии многие из пациентов с этими видами рака живут несколько лет без всяких признаков заболевания. Хотя эти препараты, как правило, применяются на продвинутых стадиях рака, 30% пациентов с меланомой демонстрируют значительное сокращение размеров опухоли, а 5% — полную ремиссию.

В декабре 2015 года Картер объявил о том, что после курса пембролизумаба МРТ мозга не обнаружило ни старых, ни новых раковых образований. Сегодня, три года спустя, он живет и здравствует, несмотря на свой преклонный возраст. Джимми Картеру 94, но он остается весьма активным, и, что приятно, выступает за ослабление политической напряженности между нашими странами.

Так Нобелевский лауреат в области медицины 2018 года спас от рака Нобелевского лауреата премии мира за 2002 год.

Ложка дегтя


Фото с сайта statnews.com

Целый ряд препаратов-ингибиторов контрольных точек одобрен и у нас в стране. Большая проблема заключается в том, что в отличие от Джимми Картера, наши пациенты, как правило, не могут их оплатить, а государство выделяет неполную сумму, либо не выделяет денег вовсе.

в некоторых регионах существует льгота, которая регулируется законом о социальной помощи и дает возможность закупить необходимый препарат за бюджетные деньги.

Также эксперт подчеркивает, что новая терапия – не панацея, она применяется лишь при наличии некоторых маркеров, и имеет ряд побочных эффектов.

Он никогда не забудет эту встречу


Фото с сайта cancerresearchuk.org

Эллисон очень надеется на то, что открытая им и Тасуку Хондзё терапия будет усовершенствована, а показания для нее — расширены. Планируется применять ее, в том числе, при лечении таких упрямых опухолей, как рак молочной железы, простаты и толстой кишки.

Сейчас проводятся сотни испытаний препаратов, основанных на иммунологических подходах, а также разрабатываются протоколы оптимального сочетания иммунотерапии с традиционными химио- и радио-терапиями.

Эллисон поддерживает контакт со многими из пациентов, поправившимися после применения созданной им и его коллегами терапии. Но одна пациентка выделяется из всех. Это та самая женщина, которая в 2004 году стала первой из спасенных от рака в результате применения ингибитора контрольных точек.

Так случилось, что Эллисон находился в Центре, когда врач сообщил пациентке эту чудесную новость и предложил ей познакомиться со своим спасителем. Девушка была потрясена и выздоровлением, и возможностью увидеть человека, отменившего ее смертный приговор.

По признанию Джеймса Эллисона, он никогда не забудет эту встречу.

А молодая женщина до сих пор жива и здорова.

2 октября 2018 12:00

Ирина Алексеенко, заведующая группой генной иммуноонкотерапии Института биоорганической химии РАН

Раковая опухоль — это совокупность раковых и окружающих их условно нормальных клеток, называемых стромальными. Они непрерывно взаимодействуют между собой. Стромальные клетки играют ключевую роль в метастазировании опухоли и вносят важнейший вклад в возникновение ее устойчивости к лечению.

До открытия белков CTLA-4 и PD-1 Джеймсом Эллисоном и Тасуку Хондзё все усилия по терапии рака направлялись на уничтожение раковых клеток, что в большинстве случаев было неэффективно. Сегодня, в частности благодаря открытию Эллисона и Хондзё, ясно: чтобы победить рак, следует отказаться от попыток его лечения, нацеливаясь только на раковые или только на стромальные клетки. Вместо этого нужно предпринимать попытки разрушить опухоль в целом, разорвав взаимодействие между ее частями.

Белки CTLA-4 и PD-1, называемые иммунными контрольными точками, создают контакты между раковыми и окружающими их стромальными иммунными клетками. Использование ингибиторов этих белков привело к неизмеримому увеличению продолжительности жизни многих людей с метастатическими формами рака. Например, у некоторых пациентов с метастатической меланомой происходило полное исчезновение метастазов, и в настоящее время они здоровы (с момента терапии прошло более десяти лет).

К сожалению, такой позитивный эффект применения ингибиторов иммунных контрольных точек наблюдается только у незначительного числа пациентов. Кроме того, примерно у 15 процентов пациентов наблюдаются тяжелые, иногда смертельные побочные эффекты. Тем не менее открытие CTLA-4 и PD-1 и применение их ингибиторов в клинике произвели революционный сдвиг в восприятии рака как неизлечимой болезни. В результате возникла новая область поиска перспективных мишеней терапевтического воздействия на рак. Возможно, скоро будут найдены такие молекулы, применение которых позволит лечить рак даже в самых безнадежных случаях.


Андрей Афанасьев, биоинформатик, гендиректор генетической лаборатории yRisk

Открытие терапии рака путем снятия ограничения иммунного ответа — это не просто прорыв в науке, это прорыв в регуляции медицины. Благодаря работе профессора Онкологического центра Техасского университета Джеймса Эллисона, фармацевтические компании смогли разработать и зарегистрировать три лекарственных препарата, называемые в противораковой терапии CHECKPOINT-ингибиторами — Yervoy, Opdiva и Keytruda. Это подтип таргетной терапии, когда вещества помогают иммунной системе распознать обман раковых клеток. Некоторые из них неплохо умеют дурить иммунную систему и становятся для нее невидимыми. В норме наша иммунная система такие клетки отлавливает и уничтожает огромным арсеналом доступных ей способов. Собственно, раковые клетки эволюционируют так, чтобы иммунную систему обманывать, а CHECKPOINT-ингибиторы помогают этот обман распознать и дать иммунитету возможность атаковать клетки.

Особенно интересен препарат Keytruda. Обычно препараты регистрируют по показаниям: например, есть рак легкого — мы делаем лекарство от этого заболевания, есть рак молочной железы — делаем препарат против него. Но в прошлом году случилось совершенно уникальное событие: Keytruda зарегистрировали как препарат для любого вида рака, с уточнением, что его применение целесообразно, если в опухоли обнаруживают так называемую микросателлитную нестабильность — особую склонность ДНК клетки к развитию мутаций. Это огромный прорыв, по сути, это первый препарат, который прописывается не по типу локализации опухоли, а по ее молекулярному портрету.

Интересно, что Джеймс Эллисон занимается не только научной деятельностью, но и коммерциализацией придуманных технологий. В двух созданных им компаниях сейчас есть российские инвестиции. Этот факт радует, особенно учитывая, что сегодня Россия не играет ведущей роли на рынке производителей медицинских препаратов. Но русские деньги хотя бы вкладываются в открытия, получившие Нобелевскую премию.


Стоит вспомнить, что основоположником развития иммунотерапии был Илья Ильич Мечников. Суть достижения американского и японского исследователей — в открытии специфических белков, которые помогают клеткам злокачественной опухоли оставаться незамеченными для иммунной системы организма. Блокировка таких белков позволяет иммунитету распознать опухоль и начать с нею борьбу. Каким окажется вклад этого открытия в борьбу с раком, судить рано. Будет идеально, если оно позволит сформировать самостоятельную методику лечения. Но если нет, вполне обоснована надежда на то, что его применение усилит эффект от химиотерапии.

Чтобы сделать окончательные выводы о значении работ Эллисона и Хондзё, необходимо провести большие клинические исследования. Ведь у предлагаемого метода есть свои риски — в частности, развитие аутоиммунных заболеваний. Пока проведенные исследования находились на доклиническом уровне — это экспериментальное лечение ограниченного числа больных. Но это необходимый этап, через который проходят все открытия в медицине.

У нас в Национальном исследовательском центре радиологии также проводятся исследования иммунных методов борьбы со злокачественными опухолями. Однако мы выбрали несколько иное направление — не подавлять иммунное сопротивление опухоли, а стимулировать собственный иммунитет больного. Возможно, наша работа окажется хорошим дополнением к методам Эллисона и Хондзё. Комбинация блокирования иммунитета опухоли и усиления иммунитета организма могут иметь хорошую перспективу. Сейчас мы планируем связаться с обоими учеными в рамках открытой научной дискуссии и ознакомить их с нашей методикой. Вряд ли это заявка на новую Нобелевскую премию, но мы рассчитываем на свой вклад в общее дело.


Алексей Водовозов — военный врач, член Клуба научных журналистов и Ассоциации медицинских журналистов

Открытие Джеймса Эллисона и Тасуку Хондзё — это точно не панацея: злокачественных опухолей много, они очень разные. Будет правильнее назвать это переворотом и важной вехой в терапии онкологических заболеваний. Да, мы говорим об успешном лечении в очень небольшом проценте случаев, но это очередной шаг, который показывает, куда движется онкология в целом.

И это — лучшая причина для того, чтобы вкладывать средства в исследования и разработку лекарств. Россия, к слову, тут в первых рядах, у нас этим направлением занимаются активно и успешно. Я лично знаю таких фанатов своего дела, и теперь они получили дополнительную пару крыльев за спиной. Не исключено, что в относительно близком будущем мы услышим о применении этой методики и против других видов злокачественных новообразований.

Борьба с раком идет с переменным успехом, но в целом движение поступательное, прогресс есть. Мы научились обнаруживать злокачественные новообразования максимально рано, нашли способы успешно справляться с первыми двумя стадиями заболевания, теперь постепенно добрались и до неоперабельных и метастатических форм самой злокачественной из всех злокачественных опухолей — меланомы. Препараты становятся все эффективнее, побочных эффектов у них все меньше, а шансов на успех все больше. С очень осторожным оптимизмом можно сказать, что рак становится лишь одним из хронических заболеваний. На наших глазах происходит настоящее чудо. Только оно научно обосновано и является продуктом человеческого разума.


Александр Панчин, биолог, член Комиссии РАН по борьбе с лженаукой и фальсификацией научных исследований

Во-первых, у клеток есть механизм самоубийства: накопив множество повреждений, они могут сами себя уничтожить, пожертвовать собой ради блага всего организма. Такая запрограммированная смерть называется апоптоз. В раковой клетке этот механизм ломается.

Во-вторых, клетки реагируют на различные сигналы, которые останавливают деление. Когда образуется опухоль, ее потребности в питательных веществах возрастают: раковым клеткам нужно научиться выделять вещества, которые привлекут дополнительные кровеносные сосуды.

Наконец, раковым клеткам нужно получить мутации, помогающие им избежать иммунной системы, которая может распознать их и уничтожить. Например, в них может включиться механизм защиты от иммунной системы, за изучение которого и дали Нобелевскую премию.

Некоторые наши клетки умеют производить белки, снижающие вероятность того, что их атакует иммунная система. Такие белки могут играть роль в предотвращении аутоиммунных реакций. И раковая клетка может начать их производить в большом количестве.

Онкологические заболевания возникают по разным причинам и требуют разнообразия терапевтических подходов. Каким-то раковым клеткам можно восстановить систему клеточного самоубийства, другим перекрыть снабжение кровью, третьи можно убить облучением или веществами, токсичными для активно делящихся клеток. А еще можно натравить на раковые клетки иммунную систему, даже если они научились ее избегать. Специальные вещества могут инактивировать упомянутые выше белки, защищающие от иммунитета.

Наш арсенал методов борьбы с онкологическими заболеваниями разрастается, и с каждым годом они становятся все эффективнее.


Наши эксперты – специалисты-онкологи, участники Российского общества клинической онкологии (RUSSCO):


заместитель директора по научной и инновационной работе ФГБУ НМИЦ онкологии им. Н. Н. Блохина Минздрава РФ, член-корреспондент РАН, профессор, доктор медицинских наук Всеволод Матвеев;


ведущий научный сотрудник отделения амбулаторной химиотерапии ФГБУ НМИЦ онкологии им. Н. Н. Блохина Минздрава РФ, доктор медицинских наук Елена Артамонова;


ведущий научный сотрудник лаборатории клинической иммунологии опухолей ФГБУ НМИЦ онкологии им. Н. Н. Блохина Минздрава РФ, академик РАЕН, заслуженный деятель науки, профессор, доктор медицинских наук Заира Кадагидзе.

Джуди (на фото с мужем) – первая пациентка, чей иммунитет полностью уничтожил рак.

Наступило прозрение!

Практически единственным способом лекарственного лечения рака до недавнего времени была химиотерапия – тяжело переносимая и чреватая многими побочными эффектами. Но сегодня, хотя химия по-прежнему остаётся методом № 1, у неё появилась реальная и в некоторых случаях более эффективная альтернатива.

Иммунитет играет важную роль в развитии рака. Ведь именно нарушения в его работе способствуют бесконтрольному размножению клеток опухоли. Наша защитная система просто не замечает растущее в организме зло, принимая клетки опухоли за свои.

Ранее учёные не знали, как эффективно воздействовать на иммунитет, а все методы сводились в основном к его стимуляции. Но оказалось, что у иммунной системы существуют так называемые контрольные точки, которые как раз и останавливают противоопухолевый иммунный ответ. Блокада этих точек может перезагрузить иммунную систему и восстановить её работу. Применяемые сегодня иммунные препараты помогают нашей защитной системе прозреть и приняться за дело, для которого, собственно, она и нужна. То есть бороться с нарушителями работы организма, в данном случае с раком.


Взаимодействие иммунной системы и опухоли проходит три этапа.

– прогрессия опухоли. За счёт усиленного деления злых клеток, способных подавлять иммунную систему или уклоняться от её воздействия, новообразование продолжает захватывать организм.

Современная стратегия иммунотерапии рака связана с открытием так называемых контрольных точек иммунитета, которые не позволяют нашей защитной системе проявлять свою противоопухолевую активность. Именно эти точки и защищают опухоль, делая её невидимой для иммунитета. Соответственно, заблокировав их с помощью инновационных препаратов, можно перезапустить иммунную систему, добившись от неё формирования адекватного противоопухолевого ответа. В результате переученные Т‑лимфоциты уже могут распознавать, атаковать и уничтожать чужеродные раковые клетки. При этом таких побочных эффектов, как при химиотерапии, при иммунотерапии не возникает и госпитализация не требуется – всё делается амбулаторно.


Не теряя надежды

Сегодня уже существует большой ряд иммунных препаратов, а несколько сотен других (в том числе и отечественных) готовятся выйти на рынок, а пока проходят клинические испытания в разных фазах. Это даёт реальный шанс больным даже с раком 4‑й стадии, что их болезнь из фазы метастазирования уйдёт в хроническую фазу и жизнь будет продолжаться. Исследуются и возможности иммунных лекарств в отношении профилактики рака. И хотя пока нет данных об эффективности их использования у больных с высоким риском рецидива, тем не менее поиски в этом направлении ведутся.

Разумеется, ещё далеко до того, чтобы научить иммунную систему на корню уничтожать рак. Но, как утверждают специалисты, мы стоим на пороге новых достижений, благодаря которым иммуноонкология будет главным направлением в лечении злокачественных опухолей в ближайшие годы.

Кому это доступно

Хотя иммунные препараты достаточно дороги, их стоимость с каждым годом снижается. А некоторые из них уже вошли в список жизненно важных лекарственных препартов (ЖНВЛП), отпускаемых за государственный счёт в рамках ОМС. Больные их могут получить в онкодиспансерах после решения врачебной комиссии. Кроме того, у пациентов есть возможность пролечиться бесплатно, участвуя в клинических исследованиях новых препаратов или в программах раннего доступа, которые организуются фармацевтическими компаниями при выпуске первых партий лекарств на рынок.


Помогает не всем

Несмотря на обнадёживающие новости, иммунотерапия пока всё же не является заменой химиотерапии. Это лишь альтернативный метод лечения рака, применяемый по строгим показаниям. И помогает такое лечение не всем, поэтому врачам очень важно выявлять тех пациентов, которым он подходит, чтобы не тратить средст­ва понапрасну там, где это не даст результата.

Тем не менее исследования доказали, что у 15–20% больных с прогрессированием опухоли после предшествующей химиотерапии удаётся получить длительный (иногда многолетний) клинический выигрыш. Сегодня во всём мире проводятся широкомасштабные исследования биомаркеров, способных предсказать высокую эффективность иммунных препаратов для лечения рака. Иммунотерапия уже показала эффективность при метастатическом раке почки, головы и шеи, раке лёгкого, меланоме, лимфомах и некоторых других злокачественных новообразованиях. Например, больные с диссеминированной меланомой, раньше погибавшие в течение месяцев, на иммунных препаратах живут уже более 10 лет.

Читайте также: