Окисляется ли медь хлором

Тем не менее, в силу того, что использование медных труб в системах водоснабжения и отопления для России относительно новое, зачастую и у заказчиков, и у строителей возникают различные вопросы по проектированию, монтажу и эксплуатации. Один из таких вопросов о совместимости медных труб с хлорированной водой.

Итак, какое же вредное влияние имеет хлор, содержащийся в питьевой воде на медные трубы? Ответ – никакого. Вредного – никакого. По всей вероятности, почвой для предположения о вредоносном воздействии хлора на медь послужило такое его вредное воздействие на некоторые виды ЛАТУНИ, используемый при производстве различной сантехнической арматуры. Дело в том, что у латуней с высоким содержанием цинка при взаимодействии хлором, особенно на горячей воде, происходит т.н. обесцинкивание, в результате чего латунь утрачивает свою прочность. Явление это известно давно и поэтому добросовестные изготовители для применения в хлорированной воде производят арматуру из латуни с пониженным содержанием цинка. Но, поскольку, латунь является одним из сплавов меди и даже имеет схожий цвет, многие строители, от незнания, распространили свойство латуни на медные трубы.

На самом деле, систематическое воздействие раствора хлора может оказать вредной влияние на медные трубы при уровне его содержания свыше . 50 мг/л. С той оговоркой, что такой уровень содержания хлора в питьевой и даже технической воде не может быть достигнут даже теоретически. А при реально достижимых в системах водоснабжения величинах содержания свободного хлора он оказывает на медные трубы. положительное влияние, способствую образованию и/или поддержанию на внутренней стенке труб тонкого слоя твердого трудно растворимого слоя окисла меди, например, малахита, которые продлевает срок службы медных труб свыше заявленных. Так, например, в США зачастую используют именно насыщенные растворы хлора (до 200 мг/л) не только для целей эффективной дезинфекции медных систем, но и для ускорения образования на внутренней поверхности упомянутого защитного слоя. Точности ради следует заметить, что большинство труб европейского производства в результате применяемой технологии подготовки товарной продукции УЖЕ имеют на внутренней поверхности защитную пленку из окиси меди, поэтому гиперхлорирование для таких труб не требуется и, хоть и не критично, но противопоказано: высокие уровни хлора могут смыть тонкую заводскую защитную пленку, хотя на ее месте начнет образовываться новая, другая защитная пленка. А США товарная трубная продукция защитной пленки не имеет, поэтому гиперхлорирование при промывке обосновано.

В крайне редком случае сочетании с некоторыми другими веществами, теоретически содержащимися в питьевой воде, вредной действие хлора на медь может начаться (но не обязательно) уже с уровня 5-6 мг/л, что моделировалось в лабораторных условиях, но, повторимся, такой уровень содержания хлора в воде не только невероятен для сетей централизованного водоснабжения, но и не допустим по причинам, имеющим значение для здоровья населения.

В качестве примера можно привести опыт Гонконга, где медные трубы являются не просто основным, а почти единственным материалом для трубопроводов систем питьевого водоснабжения, исключая стояки из ВЧШГ в небоскребах. Так вот, верхний предел по содержанию свободного хлора в питьевой воде в Гонконге установлен не уровне не 0,5 мг/л (как в России), а на уровне 5 мг/л, т.е. в 10 раза выше! Причины понятны: в климатических условиях Юго-Восточной Азии выше риски лавинообразного распространения нежелательных бактерий и микробов. Но дело не в этом. При том, что среднегодовые значения по содержания остаточного свободного хлора в питьевой воде в Гонконге на кране у потребителя составляют всего 0,6 мг/л (т.е. практически равны и даже чуть выше ВЕРХНЕГО предела, установленного в России), сезонные колебания включают повышения до упомянутых 2 мг/л (т.е. в 4 раза больше, чем верхний допустимы предел в России). И так много десятков лет. Есть ли в Гонконге из-за этого какие либо проблемы с медными трубами или гигиеническими показателями воды? Ответ известен – нет! Теория и практика, в данном случае Гонконга, находятся в полном согласии. А практика, заметим, все-таки один из критериев истины!


При этом, как известно, реальную опасность хлорированная вода таит для полимерных труб. Так, у нас есть свидетельства того, что некоторые добросовестные производители полимерных труб ограничивают их применение в случае, если содержание свободного хлора в воде превышает 0,1 мг/л. Как видно из приведенных норм, реальное содержание хлора в воде силу требований СанПиН-а в России выше. Другой вопрос состоит в том, что некоторые производители или продавцы полимерных труб не предупреждают потребителя об ограничениях, связанных с хлором, но это пусть остается на совести самих таких производителей и продавцов.

Химические свойства меди

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Данная реакция протекает при комнатной температуре.

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Химические свойства хрома

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

С азотом металлический хром взаимодействует при температурах более 1000 o С:

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

Химические свойства железа

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Коррозия меди — это процесс спонтанного разрушения данного металла в результате различных видов воздействия окружающей среды. Здесь нельзя применить такое понятие, как ржавление, которое привычно для описания данного процесса с железом. Причиной коррозии любых металлов служит термодинамическая неустойчивость материала к воздействию активных веществ, находящихся в воздухе. Скорость коррозии меди напрямую зависит от изменения температуры. При увеличении температуры на 100 °С темпы протекания реакции возрастают в несколько раз.

Свойства меди


Коррозионные свойства

Поскольку материал не является химически активным элементом, коррозия меди практически не происходит при взаимодействии с воздухом, пресной и морской водой.

В сухом воздухе образуется тонкая оксидная пленка, толщина которой составляет около 50 нм. В пресной воде скорость коррозии металла составляет 0,05–0,25 мм/год. Однако при содержании в жидкости аммиака, сероводорода, хлоридов и некоторых других примесей интенсивность коррозионного процесса возрастает.

В морской воде коррозия меди незначительна, и интенсивность ее соизмерима с разрушением в пресной. Однако при увеличении скорости движения среды возникает ударная коррозия, что приводит к повышению скорости процесса. Коррозия меди существенно зависит от температуры, и при возрастании последней скорость разрушения увеличивается.

Медь является единственным материалом, который не подвержен обрастанию водорослями, так как ее ионы губительно действуют на них. В почве, насыщенной микроорганизмами, скорость коррозионных процессов заметно возрастает. Интенсивность их протекания напрямую зависит от pH грунта. Чем больше отклонение значения показателя от нейтрального, тем быстрее происходит коррозия металла. Влияние микроорганизмов на процесс разрушения обуславливается выделением сероводорода в результате их жизнедеятельности.

Продукты почвенной коррозии элемента отличаются от атмосферной, имеют более сложный состав и структуру.

При очень длительном нахождении медных предметов в почве они превращаются в рыхлую массу светло-зеленого цвета, при непродолжительном — покрываются незначительным слоем патины, которая легко удаляется при очистке.

Коррозия меди, покрытой слоем олова (луженой), практически отсутствует. При качественном лужении она прекрасно служит под воздействием града и снега, становится нечувствительной к перепаду температур. Срок службы таких материалов составляет около 100 лет. При этом не теряются первоначальные свойства. Со временем цвет не изменяется, а остается первоначальным — серебристо-металлическим. Луженая медь прекрасно показала себя в качестве кровельного материала. Ведь не зря купола многих храмов покрывают именно этим материалом.


Из-за высокой коррозионной устойчивости к воздействию многих агрессивных сред медь нашла широкое применение в химической промышленности.


В гальванической паре она является катодом для большинства металлов и сплавов и в результате электрохимических процессов при контакте с ними вызывает их ускоренную коррозию.

Уважаемые форумчане помогите в таком вопросе. Есть медная трубка (теплообменник) внутри которой накопилась накипь, нужно эту накипь удалить химическим путем т.е. кислотой (механически удалить не представляется возможности), но так чтобы эта химия не трогала саму медную трубку. Порылся в инете и везде нахожу что самые распространенные кислоты (уксусная, серная , соляная, азотная) реагируют с медью. Это так? Как быть?

Vidis написал :
нужно эту накипь удалить химическим путем

Растворить?
Вряд ли получится.

отчего же не получится? Год назад получилось, но только с солями меди, пробовал уксусной эссенцией и получил на выходе синий раствор. Оттого и возник вопрос чтобы не попортить теплообменник

Соляной кислотой промывали теплообменники на газовых колонках всю жизнь.

йцукер написал :
Соляной кислотой промывали теплообменники на газовых колонках всю жизнь

Она известь растворяет?

Юбер написал :
Она известь растворяет?

Burrdozel написал :
там как раз и солянка бывает в небольшой концентрации.

Ага, дохлый номер. На прежней работе раз в год травили трубки контуров установки СВЧ полые медные трубки квадрат 10 мм, брала только концетрированная кислота.

йцукер написал :
Карбонаты кальция и магния.

Понятно. Спасибо за информацию.

йцукер написал :
Карбонаты кальция и магния

Дык это практически любая кислота берёт. В Вашей СВЧ, наверное, какие-нибудь тараканы пластмассой гадили.
Вот и не брало "просто" кислотой.

А подогреть? А поболтать?

Медь без воздействия окислителя или наложения положительного потенциала не растворяется, так как стоит "за водородом".
Окислительными свойствами в отношении металлической меди обладают следущие кислоты
Азотная в любой концентрации , серная в концентрации свыше 60 %, хлористоводородная / соляная/ в концентрации свыше 10% при прусутсвии следов хлора и перхлорная.
Соответственно ни уксусная ни щавелевая ни лимонная кислота разьесть металлическую медь не могут, максимум - они съедят окисные пленки на ее поверхности и в накипи / медь медленно окисляется водопроводной водой из-за присутствия в ней кислорода и следов хлора/
Для чистки я бы выбрал или уксусную или лимонную или разведенную соляную кислоту , так как полный оксалат кальция нерастворим в воде.

В хозмагах полно химии именно для чистки радиаторов газовых колонок. Как правило в основе соляная кислота с ингибиторами.

DSP007 написал :
Соответственно ни уксусная ни щавелевая ни лимонная кислота разьесть металлическую медь не могут, максимум - они съедят окисные пленки на ее поверхности и в накипи / медь медленно окисляется водопроводной водой из-за присутствия в ней кислорода и следов хлора/

Медь после них сверкает.

DSP007 написал :
Соответственно ни уксусная ни щавелевая ни лимонная кислота разьесть металлическую медь не могут,

а какже мой прошлогодний опыт? Я заливал в теплообменник именно уксусную эссенцию из магазина

Vidis написал :
пробовал уксусной эссенцией и получил на выходе синий раствор

значит идет реакция с медью

Vidis написал :
значит идет реакция с медью

DSP007 написал :
они съедят окисные пленки на ее поверхности и в накипи

В детстве старинные пятаки протравливали соляной кислотой.

НБ написал :
Медь после них сверкает.

Vidis написал :
а какже мой прошлогодний опыт? Я заливал в теплообменник именно уксусную эссенцию из магазина
значит идет реакция с медью

Но не с компактной металлической медью труб теплообменника, а с накопившимися в в накипи солями гидрата окиси меди Me [Cu (0H)2] , образовавшимися из за окисления трубопровода кислородом, содержащимся в воде.

Десятилетиями для промывки медных теплообменников использовалась соляная кислота. И нормально. Водный раствор соляной кислоты практически инертен по отношению к меди. А если какие соединения купрума и образуются, то это, скорее, представляет теоретический интерес, нежели практический, то есть медь - в практическом смысле - остаётся целой.

Serx написал :
для промывки медных теплообменников использовалась соляная кислота. И нормально.

Burrdozel написал :
Заодно самогон потом приятно (чистым унитазом) будет пахнуть..

Burrdozel написал :
Короче, Vidis, не парьтесь

Если теплообменник нормально подзабит, то лучше сол.кислоту 1:2 с водой, чтобы побыстрее пробила.

Vidis написал :
теплообменник ГВС двухконтурного газового котла КСГК 12,5.

И как быстро он оброс?

Serx написал :
теплообменник нормально подзабит

не особо сильно, но разница в напоре хол и гор воды чувствуется, да и КПД котла на ГВС падает

Был у меня такой случай. Только вот за один вечер не получилось - пришлось на следующий день продолжить. Так что лучше лить максимально эффективное средство.
Пламенный привет!

нет не секретные, свой котел не вскрывал по этому точно размер сказать не могу, но видел в продаже теплообменник к КСГК12,5: медная трубка длиной около 3м диам. прим 15мм скрученная спиралью.

Vidis написал :
медная трубка длиной около 3м диам. прим 15мм скрученная спиралью.

Сходил,взял поллитры HCl Х.Ч. будем пробовать.

йцукер написал :
И как быстро он оброс?

за год, вода у нас дюже жесткая, ТЭНы (без чистки) на стиралках выгорают за год.

Касательно теплообменника- вода в него откуда поступает и куда вытекает , нельзя ли его замкнуть и дистиллятом заполнить? Если нельзя и вода питьевая -есть еще два способа-
1) предварительный прогрев воды
2) магнитный "умягчитель воды" - работает в случае если вода содержит много железа, выпадающего в качестве ржавчины - суть из-за воздействия магнитного поля соли железа выпадают не плотной пленкой, а взвесью, которая водой уносится- увлекая за собой во взвесь и соли жесткости.

А если вода не питьевая- NaЭДТА в помощь, иже Трилон -Б.

Да, еще что- ион хлора- жуткий коррозионный агент для железа и люминя- отмывайтесь тщательнее, лучше всего потом прогнать какое нибудь щелочное вещество типа обычной питьевой соды.


Медные трубы подвергаются коррозии

Изделия из меди наиболее устойчивы в атмосфере, морской воде, в горячей и холодной пресной воде. В морской воде медь не обрастает микроорганизмами, поскольку ее ионы оказывают губительное воздействие на водоросли и моллюсков. Этот металл абсолютно не устойчив в растворах серы и ее соединениях, в окислительных веществах, аэрированных водах, азотная кислота полностью разрушает его структуру.

Воздействие водной среды


В водной среде медь подвергается коррозии

В воде скорость коррозии меди зависит от наличия в ее составе оксидных пленок и растворенного кислорода. Чаще всего металл подвергается ударной или точечной коррозии. Чем насыщеннее вода кислородом, тем быстрее протекают процессы коррозии меди. Пагубно влияют воды, содержащие ионы хлора и низкий уровень pH. Но в целом этот металл оказывает высокое сопротивление водной среде, а разрушению препятствует появление слоя оксида. Так называемая зеленая или черная корка плотно соприкасается с поверхностью изделия и не позволяет разрушающим веществам проникать в металл. Оксид начинает образовываться после двух месяцев непрерывного нахождения изделия в воде. Оксидный слой бывает двух видов:


Медные изделия поднятые со дна океана

  • карбонат – имеет зеленый цвет и считается более прочным;
  • сульфат – имеет темный цвет и рыхлую структуру.

Медь является наиболее предпочтительным металлом для изготовления трубопроводов. Но если, вода, проходящая по медным трубам, в дальнейшем контактирует с алюминием, железом или цинком, то она в значительной мере ускорит коррозию этих металлов. Для предотвращения этого и защиты меди от коррозии используют лужение металла, которое получают путём нанесения на поверхность изделия расплавленного олова. Луженое изделие отличается высокой коррозийной стойкостью, оно не подвержено перепадам температур и способно противостоять негативным атмосферным факторам.

Воздействие кислот и щелочей


Водопроводные трубы из меди

Кислотная среда является для меди наиболее агрессивной. Самое сильное воздействие оказывают азотная и серная кислота, если раствор концентрированный, то металл может полностью раствориться. Эту особенность металла учитывают при изготовлении труб, деталей для нефтегазовой промышленности, где такие кислоты присутствуют постоянно. Коррозия меди в щелочной среде не наблюдается, наоборот, в щелочи медь восстанавливается с двухвалентного состояния до одновалентного. Медь сама по себе является щелочным металлом.

Для защиты металла от кислотного воздействия используют ингибиторы – это такие вещества, которые способны замедлить химические реакции. Различают следующие виды ингибиторных веществ:

  • экранирующие – образуют на поверхности металла защитную пленку и не позволяют ему контактировать с кислотой;
  • окислительные – образуют слой окиси на металле, который вступает в реакцию с кислотой и препятствуют ее проникновению к поверхности металла, при этом чем толще это слой, тем выше защита;
  • катодные – повышают перенапряжение катодов раствора, вследствие чего химическая реакция замедляется.

Для меди наиболее приемлемым является экранирующий вид ингибиторов, при этом используют бензотриазол, вместе с солями меди он образует защитную пленку и препятствует разрушению металла.

Коррозия в почве и влажном воздухе

Разрушение меди в грунте происходит под влиянием кислот, содержащихся в почве, в отличие от воды насыщенные кислородом породы в меньшей степени окисляют металл. Наибольшую опасность для изделий из меди представляют живущие в почве микроорганизмы, точнее, продукты их жизнедеятельности.


Земля также как и вода подвергает медные трубы коррозии

Многие из них выделяют сероводород, который способен разрушить структуру металла. Изделие, которое находилось долгое время в земле, может полностью рассыпаться при изъятии.

Во влажном воздухе коррозия меди проявляется с течением длительного периода времени. Сухой климат вообще не влияет на разрушение металла. Влажный воздух насыщен углекислым газом, сульфидами, хлоридами – эти вещества вызывают коррозию металла, разрушая ее защитную пленку. При длительном пребывании изделия во влажном воздухе начинает образовываться слой патины – это оксид солей, он сначала имеет темно-коричневый цвет, затем приобретает зеленый оттенок. Патина не растворяется в воде и не подвержена влиянию влажности, а также нейтральна к меди, поэтому не только не разрушает ее, но и выполняет защитную функцию. На сегодняшний день существуют методы искусственного создания патины, их чаще всего используют художники и скульпторы, делая предметы, похожими на старинные вещи. Винтажный стиль в интерьере сейчас пользуется большой популярностью.

Видео: Как остановить коррозию медных монет

Читайте также: