Какая валентность у углерода с хлором

Общие сведения о валентности углерода

В свободном состоянии углерод известен в виде алмаза, кристаллизующегося в кубической и гексагональной (лонсдейлит) системе, и графита, принадлежащего к гексагональной системе. Такие формы углерода, как древесный уголь, кокс или сажа имеют неупорядоченную структуру. Также есть аллотропные модификации, полученные синтетическим путем – это карбин и поликумулен – разновидности углерода, построенные из линейных цепных полимеров типа …-C≡ C-C≡C-… или .. = C = C = C = C = ….

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

В природе углерод находится в виде двух стабильных изотопов 12 С (98,892%) и 13 С (1,108%).

Валентность углерода в соединениях

Углерод — шестой по счету элемент Периодической таблицы Д.И. Менделеева. Он находится во втором периоде во IVA группе. В ядре атома углерода содержится 6 протонов и 6 нейтронов (массовое число равно 12). В атоме углерода есть два энергетических уровня, на которых находятся 6 электронов (рис. 1).


Рис. 1. Строения атома углерода.

Электронная формула атома углерода в основном состоянии имеет следующий вид:

А энергетическая диаграмма (строится только для электронов внешнего энергетического уровня, которые по-другому называют валентными):


Наличие двух неспаренных электронов свидетельствует о том, что углерод проявляет валентность II в своих соединения (C II O).

В атоме углерода есть 1 вакантная орбиталь 2p-подуровня. За счет её наличия электроны 2s-подуровня могут распариваться и один из них совершает переход и занимает свободную 2p-орбиталь, т.е. для углерода характерно возбужденное состояние.


Наличие четырех неспаренных электронов свидетельствует о том, что углерод в своих соединениях (C IV O2, C IV H4, H2C IV O3 и др.) проявляет валентность равную IV.

Примеры решения задач

Задание Степень окисления +2, а валентность IV атом углерода имеет в соединении: 1) CO; 2) CO2; 3) HCOOH; 4) CH2Cl2.
Решение Определение валентности углерода следует начинать, указывая валентности для тех элементов, для которых они известны и имеют постоянное значение. Не стоит забывать и про индексы, показывающие количество атомов определенного элемента в составе данного соединения.
Задание Не проявляет высшей валентности, равной номеру группы, элемент: 1) углерод; 2) хлор; 3) фосфор; 4) фтор.
Решение Как сказано в условии задачи высшая валентность химического элемента можно определить по номеру группы, в которой он находится в Периодической таблице Д.И. Менделеева. Углерод, хлор, фосфор и фтор расположены в IV, VII, V и VII группах, соответственно. Среди них, только фтор не проявляет высшей валентности, равной номеру группы. Единственная валентность характерная для фтора равна I.
Ответ Вариант ответа 4.

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Валентность — это способность атомов химических элементов образовывать определенное число химических связей с атомами других химических элементов.

Ковалентные связи могут образовываться по обменному и донорно-акцепторному механизмам .

Обменный механизм образования ковалентной связи — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет по одному неспаренному электрону.


Донорно-акцепторный механизм — образование связи происходит за счет электронной пары одного из атомов (атом-донор) и вакантной орбитали другого атома (атом-акцептор):


Таким образом, атомы могут образовывать химическую связь не только за счет неспаренных электронов на внешнем энергетическом уровне, но и за счет неподеленных электронных пар, или свободных орбиталей на этом уровне.

Большинство элементов характеризуются высшей, низшей или промежуточной валентностью в соединениях.

Для большинства элементов высшая валентность, как правило, равна номеру группы, низшая валентность определяется по формуле: 8 — № группы. Промежуточная валентность – это число между низшей и высшей валентностями.

Например , высшая валентность хлора равна VII, низшая валентность хлора равна I, промежуточные валентности — III, V.

Обратите внимание! Степень окисления и валентность — это не одно и то же. Хотя иногда степени окисления совпадают с валентностями. Стпень окисления — это условный заряд атома, он может быть и положительным и отрицательным. А вот образовать отрицательное число связей атом никак не может.

Например , валентность (число связей) атома кислорода в молекуле O2 равна II, а вот степень окисления атома кислорода равна 0.


Большинство элементов проявляют переменную валентность в соединениях, но некоторые элементы проявляют постоянную валентность . Их необходимо запомнить:

Элемент Валентность
Фтор F I
Кислород О II
Металлы IA группы (Li, Na, K, Rb, Cs, Fr) I
Металлы IIA группы (Be, Mg, Ca, Sr, Ba, Ra) II
Алюминий Al III


Как определить валентность атома в соединении?

Итак, не внешнем энергетическом уровне лития 1 неспаренный электрон: 1s 2 2s 1 .

+3Li 1s 2
2s 1

Следовательно, литий может образовывать одну связь и валентность лития I.

У бериллия на внешнем энергетическом уровне 2 электрона: 1s 2 2s 2 .

+4Be 1s 2
2s 2

В возбужденном состоянии возможен переход электронов внешнего энергетического уровня с одного подуровня на другой: 1s 2 2s 1 2p 1 .

+4Be * 1s 2
2s 1
2p 1

Таким образом, на внешнем э нергетическом уровне бериллия в возбужденном энергетическом состоянии есть 2 неспаренных электрона и две ваканнтные электронные орбитила. Следовательно, бериллий может образовать 2 связи по обменному механизму, т.е. валентность бериллия равна номеру группы и равна II.

Например , в хлориде бериллия валентность бериллия равна II:


Однако, на внешнем энергетическом уровне атома бериллия остаются еще 2 вакантные энергетические орбитали. Следовательно, бериллий может образовывать еще связи по донорно-акцепторному механизму, выступая в качестве акцептора двух электронных пар. Таким образом, максимальная валентность бериллия равна IV.

Например , соединения бериллия растворяются в избытке щелочи с образованием гидроксокомплекса – тетрагидроксобериллата натрия Na2[Be(OH)4]. Валентность бериллия в этом соединении равна IV. Связи между центральным атомов бериллия и гидроксид-ионами образованы по донорно-акцепторному механизму.

Ээлектронная конфигурация атома бора в основном состоянии +5B 1s 2 2s 2 2p 1 :

+5B 1s 2
2s 2
2p 1

В возбужденном состоянии: +5B * 1s 2 2s 1 2p 2 .

+5B 1s 2
2s 1
2p 2

Следовательно, бор может образовывать 3 связи по обменному механизму (за счет неспаренных электронов). Валентность бора в соединениях — III.

Например , в трихлориде бора BCl3 валентность бора равна III.


Однако, при этом у бора остается еще одна вакантная электронная орбиталь. Следовательно, бор может выступать, как акцептор электронной пары, и образует еще одну связь по донорно-акцепторному механизму.

Таким образом, бор может проявлять валентность IV.

и еще 1 связь за счет вакантной орбитали на p-подуровне по донорно-акцепторному механизму. Максимальная валентность бора равна IV. Однако чаще мы встречаем валентность бора III. Таким образом, простейший анализ строения внешнего энергетического уровня позволяет определить валентные возможности атома.

У атома углерода в возбужденном состоянии на внешнем энергетическом уровне 4 неспаренных электрона: 1s 2 2s 1 2p 3 , следовательно, максимальная валентность углерода равна IV (как правило, в органических соединениях у углерода именно такая валентность). В основном состоянии у атома углерода 2 неспаренных электрона, и валентность II. Однако посмотрим внимательно: у атома углерода в основном состоянии не внешнем энергетическом уровне есть незанятая (вакантная) электронная орбиталь. Следовательно, он может образовывать еще одну связь — по донорно-акцепторному механизму. Таким образом, в некоторых случаях углерод может проявлять валентность III (например, молекула угарного газа CO, строение которой мы рассмотрим позднее).

Валентные возможности атома азота определяются также строением его внешнего энергетического уровня. В основном состоянии электронная формула азота: +7N 1s 2 2s 2 2p 3 . За счет 3 неспаренных электронов на p-подуровне азот может образовывать 3 связи по обменному механизму (валентность III), и еще 1 связь азот может образовать по донорно-акцепторному механизму за счет неподеленной электронной пары. Таким образом, максимальная валентность атома азота в соединениях — IV. На примере азота можно убедиться, что высшая валентность атома и максимальная степень окисления — разные величины, которые далеко не всегда совпадают. Возбужденное состояние с 5 неспаренными электронами для атома азота не реализуется, т.к. на 2 энергетическом уровне есть только s и p орбитали.

Валентность. Определение валентности. Элементы с постоянной валентностью.

Образно говоря, валентность - это число "рук", которыми атом цепляется за другие атомы. Естественно, никаких "рук" у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность - это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).

Элементы с постоянной валентностью необходимо запомнить:

ЭлементыПостоянная валентность
щелочные металлы (Li, Na, K, Rb , Cs, Fr) I
металлы II группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) II
алюминий (Al) III
кислород (О) II
фтор (F) I

Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода - II (а не VI), азота - IV (способность азота проявлять валентность V - популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления - это не тождественные понятия.

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность - нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .

Пример 1 . Найти валентности всех элементов в соединении NH 3 .

Решение . Валентность водорода нам известна - она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 • 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).

Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .

Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 • 2 = 2 • Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).

Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.

Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl - элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

Зная валентности двух элементов, можно составить формулу бинарного соединения.

В примерах 1 - 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4 . Составьте формулу соединения кальция с водородом.

Решение . Валентности кальция и водорода известны - II и I соответственно. Пусть формула искомого соединения - Ca x H y . Вновь составляем известное уравнение: 2 • x = 1 • у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .

"А почему именно CaH 2 ? - спросите вы. - Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!"

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

"Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? - спросите вы. - Следует заменить эти формулы на NO 2 и CH?"

Нет, возможны. Более того, N 2 O 4 и NO 2 - это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6 ).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.

Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение . Пусть формула соединения - S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 • x = 1 • y. Несложно понять, что наименьшие возможные значения переменных - это 1 и 6. Ответ: SF 6 .

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме "Валентность" .

Хотите узнать, почему "классическое" определение валентности часто не "работает"? Почему валентность железа в FeO не равна двум? Почему для описания комплексных веществ используется понятие "координационное число"?

Валентность определяет способность хлора присоединять к себе атомы других химических элементов.

Хлор, валентность которого имеет различные значения, располагается в седьмой группе, в главной подгруппе таблицы элементов. Выясним особенности строения атома этого галогена.


Хлор в нормальном состоянии

Валентность атомов хлора определяется особенностями строения его внешнего уровня. Данный элемент находится в 7(А) группе, имеет семнадцатый порядковый номер. Учитывая, что элемент является представителем четвертого периода, он имеет не только s-, p-, но и d-орбитали.


Электронная конфигурация атома

Какую электронную формулу имеет хлор? Валентность связана с особенностями внешнего энергетического уровня, поэтому запишем конфигурацию данного элемента.

В невозбужденном состоянии на первом уровне у хлора располагаются всего два электрона, второй занимают восемь, на третьем уровне их 10 штук. Отметим, что на последнем уровне есть незаполненная d-орбиталь, которая и характеризует валентные возможности данного галогена.

  • 1s22s22p63s23p53d0.

В данном случае валентность хлора равна I. Это характерно при взаимодействии с металлами (образуются хлориды). Высшую валентность VII хлор имеет в соединениях с неметаллами, например, в оксиде хлора (7), а также в хлорной кислоте.

Приведем в качестве примеров формулы соединений хлора, в которых он проявляет такую валентность: HClO4, Cl2O7.

Последний электронный уровень называют в неорганической химии валентным, так как именно он объясняет способность элемента вступать в химические взаимодействия с другими атомами.


Возбужденное состояние

Как ведет себя при нагревании хлор? Валентность его будет меняться в том случае, если атом будет находиться в возбужденном состоянии.

Учитывая тот факт, что у каждого энергетического уровня есть определенный запас энергии, электроны двух первых уровней не изменяют своего первоначального положения. Наблюдается переход одного p-электрона с 3p энергетического уровня на 3d-подуровень. Как будет при этом менять свое участие в химических реакциях хлор? Валентность его изменится, она будет равна трем.

Рассмотрим электронную конфигурацию, которую приобретет в этом случае хлор.

  • 1s22s22p63s23p43d1.

Такая конфигурация не является устойчивой, поэтому соединения хлора, в которых он проявляет степень окисления +3, быстро разлагаются.

Так как на 3d-орбитали есть еще четыре свободные квантовые ячейки, возможен последующий переход электрона с 3p-подуровня, который приводит к образованию еще одной конфигурации атома хлора.

  • 1s22s22p63s23p33d2.

В этом случае существует пять неспаренных электронов, поэтому хлор способен проявлять валентность V, степень окисления +5.

При максимальном разогревании атома хлора происходит переход электрона с 3s-подуровня на 3d-орбиталь. В этом случае хлор имеет максимальную валентность, равную семи.

  • 1s22s22p63s13p33d3.

На внешнем энергетическом уровне у него располагается семь неспаренных электронов, поэтому валентность хлора в соединениях равна 7.

Распределение электронов по уровням, подуровням, их переход осуществляются в соответствии с правилом Хунда и принципом Паули.

Как в этом случае обозначается хлор? Валентность элемента принято указывать римскими цифрами, а возбужденное состояние атома отмечают звездочкой.


Заключение

Все затраты внутренней энергии, которые идут на процесс возбуждения атома хлора, полностью компенсируются той энергией, которая выделяется при образовании ковалентных связей. Это объясняет повышенную химическую активность хлора, находящегося в возбужденном состоянии. В своей максимальной степени окисления (+7) он проявляет свойства сильного окислителя.

Валентные возможности атома химического элемента не ограничиваются только количеством неспаренных электронов в стационарном и возбужденном виде. Например, при образовании связей в молекулах посредством донорно-акцепторного механизма, предполагают использование и свободных орбиталей.

Какие факторы влияют на валентные возможности атома хлора? Подводя итог, скажем, что в первую очередь необходимо отметить количество неспаренных электронов (незаполненные орбитали). Кроме того, в атоме должна быть свободная орбиталь, на которую будут при нагревании переходить электроны.


Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:


Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода. В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами. Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум. По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем. Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:


Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:


Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:


Так же определяют число единиц валентности атома кислорода:


По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:


Согласно вышеприведенному правилу х ·1 = II · 2 , откуда х = IV .


Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:


В этом веществе валентность углерода равна II , так как х ·1 = II · 1 , откуда х = II :


Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).


Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.


Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV , а азота — III .

Записываем рядом символы элементов в следующем виде:


Затем находим НОК валентностей обоих элементов. Оно равно 12 ( IV·III ).

Определяем индексы каждого элемента:


Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Читайте также: