Как бутан реагирует с хлором

Характеристики и физические свойства бутана

Бутан практически не растворим в воде, так как его молекулы малополярны и не взаимодействуют с молекулами воды. Он хорошо растворяется в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.


Рис. 1. Строение молекулы бутана.

Таблица 1. Физические свойства бутана.

Плотность (0 o С), г/см 3

Температура плавления, o С

Температура кипения, o С

Получение бутана

Основными источникамибутанаявляются нефть и природный газ. Его можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.

В лабораторных условиях бутан получают следующими способами:

— гидрированием непредельных углеводородов

— по реакции щелочного плавления солей одноосновных органических кислот

— взаимодействием галогеналканов с металлическим натрием (реакция Вюрца)

Химические свойства бутана

В обычных условиях бутан не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Для бутана наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.

Все химические превращения бутана протекают с расщеплением:

  • дегидрирование

  • дегидроциклизация

2) связей C-H и C-C

Применение бутана

Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука, а также используется в быту (баллонный газ).

Примеры решения задач

Задание Определите массу хлора, необходимого для хлорирования по первой стадии 3,2 л бутана.
Решение Запишем уравнение реакции хлорирования бутана:

Найдем количество вещества бутана:

Согласно уравнению реакции n(C4H10) : n(Cl2) = 1:1, значит,количество моль хлора равно:

Тогда, масса хлора будет равна (молярная масса – 71 г/моль):

Задание Рассчитайте объемы хлора и бутана, приведенные к нормальным условиям, которые потребуются для получения 2,2-дихлорбутана массой 5,5 г.
Решение Запишем уравнение реакции хлорирования бутана до 2,2-дихлорбутана (реакция происходит под действием УФ-излучения):

Рассчитаем количество вещества 2,2-дихлорбутана (молярная масса равна – 127 г/моль):

По уравнению реакции найдем количество вещества хлора. n(C4H8Cl2) : n(Cl2) = 1:2, т.е. n(Cl2) = 2 × n(C4H8Cl2) = 2 × 0,04 = 0,08 моль. Тогда объем хлора будет равен:

Бутан, получение, свойства, химические реакции.











Бутан, C4H10 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Бутан, формула, газ, характеристики:

Строение молекулы н-бутана:


Строение молекулы изобутана:


Бутан – бесцветный газ, без вкуса, со специфическим характерным запахом.

В природе содержится в природном газе , добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе . Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов ., в т.ч. сланцевой нефти.

Пожаро- и взрывоопасен.

Мало растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Бутан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Физические свойства бутана:

Наименование параметра: Значение:
Цвет без цвета
Запах специфический характерный запах
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (состояние вещества – жидкость, при 0 °C), кг/м 3 601,2
Плотность (состояние вещества – газ, при 0 °C), кг/м 3 2,672
Температура плавления н-бутана, °C -138,4
Температура плавления изобутана, °C -159,6
Температура кипения н-бутана, °C -0,5
Температура кипения изобутана, °C -11,7
Температура самовоспламенения, °C 372
Критическая температура*, °C 152,01
Критическое давление, МПа 3,797
Критический удельный объём, м 3 /кг 228
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 1,4 до 9,3
Удельная теплота сгорания, МДж/кг 45,8
Молярная масса, г/моль 58,12

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства бутана:

Бутан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства бутана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование бутана:

  1. 2. галогенирование бутана:

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы бутана, отрывая у них атом водорода, в результате этого образуется свободный бутил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома :

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование бутана проходит поэтапно – за один этап замещается не более одного атома водорода.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование бутана:

  1. 4. окисление (горение) бутана:

При избытке кислорода:

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод сажа (в различном виде, в т.ч. в виде графена , фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование бутана:

  1. 6. сульфоокисление бутана:

Получение бутана. Химические реакции – уравнения получения бутана:

Так как бутан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа , ПНГ и нефти при перегонке.

Бутан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов , например, бутена:

  1. 2. восстановления галогеналканов:

  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом , например, натрием (реакция Вюрца):

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом .

  1. 4. щелочного плавления солей одноосновных органических кислот:

Применение и использование бутана:

– в качестве топлива в смеси с пропаном в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п.;

н-бутан используется как сырьё в химической и нефтехимической промышленности для получения бутилена, 1,3-бутадиена, компонентов бензинов с высоким октановым числом, для производства других химических веществ;

– в пищевой промышленности как пищевая добавка E943a и E943b (изобутан), последний используется в качестве пропеллента;

– изобутан используется как хладагент в холодильниках , холодильных камерах, холодильных установках и системах кондиционирования воздуха . Используется самостоятельно или в смеси с пропаном. В отличие от других хладагентов данная смесь и изобутан не разрушают озоновый слой.











газовая газ редуктор газовый баллон метан бутан этан бутан пропен цена купить реакции 1 4 50 3 какой кислород вещество авто температура кг воздух вода
заправка баллонов бутаном
сколько литров стоимость сгорание уравнение реакций давление смесь расход объем литр бутана
сжиженный бутан

Взаимодействие н-бутана с хлором протекает

2) через образование свободных радикалов

3) с преимущественным образованием 1-хлорбутана

4) с образованием нескольких монохлорпроизводных

6) на свету или при нагревании

Ответ запишите цифрами без пробелов

Алканы- это предельные углеводороды, для них характерны реакции радикального замещения (с образованием свободных радикалов) , протекающие на свету или нагревании. Если алкан имеет разветвленное строение, то замещение происходит у третичных или вторичных и в последнюю очередь у первичных атомов углерода. При хлорировании алканов линейного строения образуются несколько монохлорпроизводных. Поэтому ответ: 2,4,6

у бутана же всего 4 атома углерода в скелете, то есть с какой бы стороны не присоединился первый хлор это всё равно будет 2-хлорбутан

(CH3-CHCl-CH2-CH3 и CH3-CH2-CHCl-CH3 это ведь одно и то же вещество только прочитанное с другого конца.) а вот 5 ответ по моему правильный ведь реакция идет по радикальному механизму соответственно должен ременно образоваться свободный радикал.

Будет получаться и 2-хлорбутан, и 1-хлорбутан.

Под номером 5 представлена частица с положительным зарядом - катион, а не радикал.

полностью согласен с гостем, правильный ответ 256, и если вы говорите что это катион а не радикал то объясните пожалуйста как вы понимаете слово радикал, и как ещё его можно изобразить, если не как в 5 варианте ответа, до того как он присоединился к чему либо? со всем уважением, но вы в данном случае не правы, но это моё субъективное мнение, и если вы мне толково объясните в чем наша ошибка, буду вам искренне благодарен.)))

Например, радикал изопропил изображается так:

В данном задании (взаимодействие бутана с хлором) реакция идет именно через образование радикалов.

Через образование указанного в пункте 5 катиона происходит, например, реакция бутена-2 с хлороводородом

Так что, правильный ответ 246

Взаимодействие толуола с бромом на свету протекает

1) с разрывом π-связей в молекуле толуола

2) через образование свободных радикалов

3) как реакция присоединения

4) как реакция замещения

6) по ионному механизму

Ответ запишите цифрами без пробелов

Толуол- представитель голомологического ряда аренов (ароматических углеводородов). В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция хлорирования на свету радикального замещения (образование свободных радикалов) в БОКОВОЙ цепи. Поэтому правильный ответ: 2,4,5

Этан может вступать в реакции

Этан это алкан. Для предельных углеводородов характерны реакции замещения, дегидрирования, горения, разложения, изомеризации, крекинга. В этане 2 атома углерода, поэтому реакции изомеризации и крекинга отсутствуют.

По ионному механизму протекают реакции, уравнения которых:

По ионному механизму идут реакции присоединения полярных молекул: HCl, HBr, H2O

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения.

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование.

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:


Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:


Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:


Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:


Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:


1.2. Нитрование алканов.

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

2. Реакции разложения.

2.1. Дегидрирование и дегидроциклизация.

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Уравнение дегидрирования алканов в общем виде:

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:


Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:


Алканы с более длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:


Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:



Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:


2.2. Пиролиз (дегидрирование) метана .

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:


Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

2.3. Крекинг.

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Реакции окисления алканов.

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение.

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Например, горение пропана в недостатке кислорода:

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление.

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:


  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:


  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.


4. Изомеризация алканов.

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

В реакциях данного типа происходит разрыв связей углерод-водород

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) — процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl•, •Н, •СН3,•СН2• и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород. В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

В обычных условиях алканы инертны по отношению к таким сильным окислителям, как концентрированная серная и азотная кислоты, перманганат и дихромат калия (КMnО4, К2Cr2О7).

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

Б) неполное сгорание при недостатке кислорода:

В результате нагревания алканов с кислородом (

200 о С) в присутствии катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

Крекинг (от англ. to crack — рвать) — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

Крекинг бывает термический и каталитический. Для осуществления каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

При дегидрировании остальных алканов образуются алкены:

Химические свойства циклоалканов

Химические свойства алкенов

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Например, присоединение галогенов:

Бромная вода обесцвечивается.

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает по электрофильному механизму последовательно в две стадии:

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

Алкины сгорают в кислороде:

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется при синтезе более сложных органических соединений с тройной связью:

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Лучше всего реакция нитрования протекает под действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.

Читайте также: